Recency Types for Dynamically-Typed,
Object-Based Languages

Phillip Heidegger, Peter Thiemann
Albert-Ludwigs-Universitat Freiburg

15.10.2008

Introduction

Task: Maintenance

» Finding bugs in JavaScript programs

» Understanding JavaScript programs

Introduction
@00

JavaScript

Language Properties

Some important features:
@ Weak, dynamic typing
@ Object-based language (no classes, but prototypes)
© Functions are first class values

Qo ...

Introduction
oeo

Introduction into JavaScript
Example — Objects

i |varobl = { a : 5; b : 42 };
> |var ob2 = new Object();

s |[var x = obl.a;

« |var z = ob2.a;

s |var getA = function () {
6 return this.a;

71}

s |obl.getA = getA;

s |var x2 = obl.getA();

© Object literal: {laby : e1;...lab, : e}
@ Constructor call using new

Introduction
[e]e] J

JavaScript

Example — Prototypes

i |var proto = { test : 5 };
> |function h(x) {

3 this.x = x;

a return this;

5 };

s |h.prototype = proto;

; |var o = new h("Hello!");
: |alert(o.test + 0.x);

Introduction
[1o}

Function Call after Assignment

Example

. |var x = new Object(); // x is an empty object
> |varu = x.f; // u == undefined
s |x.g = function ... ;
s x.£0);
» Wish:

get a hint that tells us £ might be undefined in line 4.

Introduction
oe

Function Call after Assignment

Example

Corrected version:

var x = new Object(); // x is an empty object
var u = x.f; // u == undefined

x.f = function ... ;

x.£Q);

» If the type system is not flow-sensitive:
x.f : undefined V (1 — 7’)

» Type system predicts a run-time error for the function call in line 4
» Solution: have x.f change type on assignment
» Problem: Unrestricted type change is unsound ...

Introduction
@00

Flow Analysis
Standard Approach

» Typical abstraction in a flow analysis:

Represent object pointer by a set of creation locations

. |var x = new ¢ Object(); // abstract location /
> |var u = x.f; // u == undefined
3 |x.f = function ... ;

x.f O ;

» Map each location to an abstract description of an object

» Updates to object have to be suiteable to the abstract description

Introduction
o] lo}

Flow Analysis
Recency-Based Approach

» Key idea: Distinguish the most recently allocated object from the
older ones (at each location)

» Map each location to two abstract descriptions, one for the most
recent object and one for the older ones

Introduction
[ele] J

Flow Analysis
Recency-Based Approach

» Observation: The abstract description for the most recent object
describes exactly one object!

» Observation: The abstract description for the older objects describes
many objects!

» Interpret an update to the most recent object by an update of the
abstract description

» Interpret an update to an older object by joining abstract
descriptions

Dynamic Semantics
Semantics

Two heaps:
» H for old objects,
» Hy for most recent object
> Type of heaps: reference — object
» references ::= (¢/, /).
» Type of objects: string — value.
Small step operational semantics:

H, Ho,e — H' Hy, €
Selected rules (Read property):

H, Hy, (@1, i).a — H, Ho, Ho(¢,)(a) if (¢,1) € dom(Hp)
H7 H07(o€7 ’)a—> Ha HOvH(& ’)(a) if (f’ I) Edom(H)

Example for the Semantics

(., let x = new’ in
let z = (x.a=2>5) in
x.a

[I,[(@£,0) — {}], let x =(@/,0) in
let z=(x.a=>5) in

[]7 [(©£7 0) = {}]7 let z = ((©£, 0)3 - 5) in
(©4,0).a

Example for the Semantics

[],[(@4,0) — {}], let z=((@¢,0).a=5) in

(@©2,0).a

[],[(@¢,0) — {a+ 5}], let z = undefined in
(@¢,0).a

[],[(@£,0) — {a — 5}], (©/,0).a

[],[(@¢,0) — {a+—5}], 5

Dynamic Semantics
[e]e] o)

Function Calls

Let's assume:

fb::= let x = new" in
let y =x in
let z=(y.a=5) in

How we evaluate
let _.=1f() in

() ?

» We will end up with two objects in the most recent heap!
» When should we move objects into the summary heap?

Dynamic Semantics
[e]e]e])

Moving objects

» Collect a set of abstract locations of objects that are possibly
created inside a lambda body

» Move objects with the suitable abstract location from the most
recent heap into the summary heap before running the function body

Static Semantics

Typing Judgment

QX TFee:t= LY T

Q summary environment

Y most-recent environment
I" type environment

L effect (set of locations)

t types

t u= obj(p)| (T, txt) 5 (I,t)| T |undefined
p = °L|@/

Object Types

Static Semantics
®000000000

let x = new’ in
let y =x in
let z=(y.a=5) in

X.a

QX ltexa:int=0,X,T
Y =[l+ [a+ int]]
I'=[x:0bj(@¢),y : obj(@F),z : undefined]

Static Semantics
O®@00000000

Object Types with Strong Update

let x = new' in

let y =x in

let z=(y.a=5) in

let w = (x.a ="crunch”") in

y.a
QX Tkey.a:string=0,%,T
Y =[{ — [a+— string]]
I'=[x:0obj(@L),y : obj(@F),

z : undefined, w : undefined]

Static Semantics
0O0@0000000

Object Types with Weak Update

let x = new! in let = x.a=42 in
Vflet y = new’ in let _ = y.a = "flush” in

vVflet z = new’ in let _=2z.a=true in
X.a

M,Q,% e new’ : obj(©F) = {4}, T,[¢ — []]

Q=0 [aT]]
=
r=

Static Semantics
O00@000000

Object Types with Weak Update

let x = new! in let = x.a=142 in
vVflet y =new’ in let = y.a="flush” in
vVlet z = new!’ in let _=Zz.a=true in

x.a
NQ,rke...:7= LTI Y

Q=[t—[a—T]
=[]
=[x : obj(@0)]

=7 L=?
=1 =2

Static Semantics
0O000@00000

Object Types with Weak Update

let x = new! in let = x.a=142 in
Vflet y = new’ in let _= y.a = "flush” in
vllet z = new’ in let _=7z.a=1true in
x.a

M,Q, %+ x.a=42:undefined = (), I, [{ — [a+— Float]|
Q=[—[a—T]

£ [t]

=[x :obj(@L)]

Static Semantics
O0000e0000

Object Types with Weak Update

let x =new! in let = x.a=42 in
vilet y =new’ in let = y.a="flush” in
v!let z = new’ in let _=z.a=true in
x.a

N,k ve:r= LT

Q=[—]a—T]
Y = [¢{ — [a+ Float]]
=[x : obj(@L)]

I =[x:0bj(°l)]

Static Semantics
0O00000e000

Object Types with Weak Update

let x = new! in let = x.a=42 in
vVflet y = new’ in let _= y.a ="flush" in
vVlet z = new! in let _=Zz.a=true in
x.a

MOXke...o7= LT
Q=[l—]a—T]]

=]

=[x :0bj(°0)]

Static Semantics
0000000800

Object Types with Weak Update

let x =new! in let = x.a=42 in
vVlet y =new’ in let = y.a="flush” in
vilet z = new! in let = z.a=true in

X.a

QY Thexa: T=0,%,T
Q=[l—]a—T]]

Y = [¢{ — [a+> Bool]]

= [x:0bj(°),y : obj(°f),z : obj(@L)]

Static Semantics
0O0000000e0

Mask Expressions

A mask expression Vie
@ not written by the programmer
@ inserted in an elaboration phase

@ syntactic marker for moving objects from the most-recent heap to
the summary heap

Static Semantics
000000000 e

Where to Mask

Elaboration applies a mask to each let that
@ directly encloses a function call, or
o directly encloses a method call

The mask label is inferred.

Conclusion

Conclusion

Recency can be modeled with a type system

Recency types partition the lifetime of an object

e initialization phase (most recent object, strong updates)
e summary phase (old object, weak updates)

Intuition: most objects are initialized once and then changed rarely

Recency types deal well with prototypes

e prototypes are often singleton objects
o precise and imprecise pointers can be arbitrarily nested

Implementation: up next

Attention

Thank you for your attention!

	Introduction
	JavaScript
	Example
	Recency Abstraction

	Dynamic Semantics
	Examples

	Static Semantics
	Object Types

	Conclusion

