
Introduction Dynamic Semantics Static Semantics Conclusion

Recency Types for Dynamically-Typed,
Object-Based Languages

Phillip Heidegger, Peter Thiemann

Albert-Ludwigs-Universität Freiburg

15.10.2008

Introduction Dynamic Semantics Static Semantics Conclusion

Task: Maintenance

� Finding bugs in JavaScript programs

� Understanding JavaScript programs

Introduction Dynamic Semantics Static Semantics Conclusion

JavaScript
Language Properties

Some important features:

1 Weak, dynamic typing

2 Object-based language (no classes, but prototypes)

3 Functions are first class values

4 . . .

Introduction Dynamic Semantics Static Semantics Conclusion

Introduction into JavaScript
Example – Objects

1 var ob1 = { a : 5; b : 42 };
2 var ob2 = new Object();
3 var x = ob1.a;
4 var z = ob2.a;

5 var getA = function () {
6 return this.a;
7 };
8 ob1.getA = getA;

9 var x2 = ob1.getA();

1 Object literal: {lab1 : e1; . . . labn : en}
2 Constructor call using new

Introduction Dynamic Semantics Static Semantics Conclusion

JavaScript
Example – Prototypes

1 var proto = { test : 5 };
2 function h(x) {
3 this.x = x;
4 return this;
5 };
6 h.prototype = proto;
7 var o = new h("Hello!");
8 alert(o.test + o.x);

Introduction Dynamic Semantics Static Semantics Conclusion

Function Call after Assignment
Example

1 var x = new Object(); // x is an empty object
2 var u = x.f; // u == undefined
3 x.g = function ... ;
4 x.f();

� Wish:

get a hint that tells us f might be undefined in line 4.

Introduction Dynamic Semantics Static Semantics Conclusion

Function Call after Assignment
Example

Corrected version:

1 var x = new Object(); // x is an empty object
2 var u = x.f; // u == undefined
3 x.f = function ... ;
4 x.f();

� If the type system is not flow-sensitive:
x.f : undefined ∨ (τ → τ ′)

� Type system predicts a run-time error for the function call in line 4

� Solution: have x.f change type on assignment

� Problem: Unrestricted type change is unsound . . .

Introduction Dynamic Semantics Static Semantics Conclusion

Flow Analysis
Standard Approach

� Typical abstraction in a flow analysis:

Represent object pointer by a set of creation locations

1 var x = neŵ ` Object(); // abstract location `
2 var u = x.f; // u == undefined
3 x.f = function ... ;
4 x.f () ;

� Map each location to an abstract description of an object

� Updates to object have to be suiteable to the abstract description

Introduction Dynamic Semantics Static Semantics Conclusion

Flow Analysis
Recency-Based Approach

� Key idea: Distinguish the most recently allocated object from the
older ones (at each location)

� Map each location to two abstract descriptions, one for the most
recent object and one for the older ones

Introduction Dynamic Semantics Static Semantics Conclusion

Flow Analysis
Recency-Based Approach

� Observation: The abstract description for the most recent object
describes exactly one object!

� Observation: The abstract description for the older objects describes
many objects!

� Interpret an update to the most recent object by an update of the
abstract description

� Interpret an update to an older object by joining abstract
descriptions

Introduction Dynamic Semantics Static Semantics Conclusion

Semantics

Two heaps:

� H for old objects,

� H0 for most recent object

� Type of heaps: reference→ object

� references ::= (q`, i).

� Type of objects: string→ value.

Small step operational semantics:

H,H0, e −→ H ′,H ′0, e
′

Selected rules (Read property):

H,H0, (@`, i).a −→ H,H0,H0(`, i)(a) if (`, i) ∈ dom(H0)

H,H0, (
◦`, i).a −→ H,H0,H(`, i)(a) if (`, i) ∈ dom(H)

Introduction Dynamic Semantics Static Semantics Conclusion

Example for the Semantics

[], [], let x = new` in
let z = (x .a = 5) in

x .a

−→
[], [(@`, 0) 7→ {}], let x = (@`, 0) in

let z = (x .a = 5) in
x .a

−→
[], [(@`, 0) 7→ {}], let z = ((@`, 0).a = 5) in

(@`, 0).a

Introduction Dynamic Semantics Static Semantics Conclusion

Example for the Semantics

[], [(@`, 0) 7→ {}], let z = ((@`, 0).a = 5) in
(@`, 0).a

−→
[], [(@`, 0) 7→ {a 7→ 5}], let z = undefined in

(@`, 0).a

−→
[], [(@`, 0) 7→ {a 7→ 5}], (@`, 0).a

−→
[], [(@`, 0) 7→ {a 7→ 5}], 5

Introduction Dynamic Semantics Static Semantics Conclusion

Function Calls

Let’s assume:

fb ::= let x = new` in
let y = x in
let z = (y .a = 5) in

x .a

f ::= λ().fb

How we evaluate
let = f () in

f () ?

� We will end up with two objects in the most recent heap!

� When should we move objects into the summary heap?

Introduction Dynamic Semantics Static Semantics Conclusion

Moving objects

� Collect a set of abstract locations of objects that are possibly
created inside a lambda body

� Move objects with the suitable abstract location from the most
recent heap into the summary heap before running the function body

Introduction Dynamic Semantics Static Semantics Conclusion

Typing Judgment

Ω,Σ, Γ `e e : t ⇒ L,Σ′, Γ′

Ω summary environment

Σ most-recent environment

Γ type environment

L effect (set of locations)

t types

t ::= obj(p) | (Σ, t × t)
L→ (Σ, t) | > | undefined

p ::= ◦L | @`

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types

let x = new` in
let y = x in
let z = (y .a = 5) in

x .a

Ω,Σ, Γ `e x .a : int⇒ ∅,Σ, Γ
Σ = [` 7→ [a 7→ int]]
Γ = [x : obj(@`), y : obj(@`), z : undefined]

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Strong Update

let x = new` in
let y = x in
let z = (y .a = 5) in
let w = (x .a = ”crunch”) in

y .a

Ω,Σ, Γ `e y .a : string⇒ ∅,Σ, Γ
Σ = [` 7→ [a 7→ string]]
Γ = [x : obj(@`), y : obj(@`),

z : undefined,w : undefined]

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Γ,Ω,Σ `e new` : obj(@`)⇒ {`}, Γ, [` 7→ []]

Ω = [` 7→ [a 7→ >]]
Σ = []
Γ = []

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Γ,Ω,Σ `e . . . : τ ⇒ L, Γ′,Σ′

Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ []]
Γ = [x : obj(@`)]

τ =? L =?
Γ′ =? Σ′ =?

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Γ,Ω,Σ `e x .a = 42 : undefined⇒ ∅, Γ, [` 7→ [a 7→ Float]]

Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ []]
Γ = [x : obj(@`)]

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Γ,Ω,Σ `e O`e : τ ⇒ L, Γ′, []

Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ [a 7→ Float]]
Γ = [x : obj(@`)]

Γ′ = [x : obj(◦`)]

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Γ,Ω,Σ `e . . . : τ ⇒ L, Γ′, []

Ω = [` 7→ [a 7→ >]]
Σ = []
Γ = [x : obj(◦`)]

Introduction Dynamic Semantics Static Semantics Conclusion

Object Types with Weak Update

let x = new` in let = x .a = 42 in
O`let y = new` in let = y .a = ”flush” in
O`let z = new` in let = z .a = true in

x .a

Ω,Σ, Γ `e x .a : > ⇒ ∅,Σ, Γ
Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ [a 7→ Bool]]
Γ = [x : obj(◦`), y : obj(◦`), z : obj(@`)]

Introduction Dynamic Semantics Static Semantics Conclusion

Mask Expressions

A mask expression OLe

not written by the programmer

inserted in an elaboration phase

syntactic marker for moving objects from the most-recent heap to
the summary heap

Introduction Dynamic Semantics Static Semantics Conclusion

Where to Mask

Elaboration applies a mask to each let that

directly encloses a function call, or

directly encloses a method call

The mask label is inferred.

Introduction Dynamic Semantics Static Semantics Conclusion

Conclusion

Recency can be modeled with a type system

Recency types partition the lifetime of an object

initialization phase (most recent object, strong updates)
summary phase (old object, weak updates)

Intuition: most objects are initialized once and then changed rarely

Recency types deal well with prototypes

prototypes are often singleton objects
precise and imprecise pointers can be arbitrarily nested

Implementation: up next

Introduction Dynamic Semantics Static Semantics Conclusion

Attention

Thank you for your attention!

	Introduction
	JavaScript
	Example
	Recency Abstraction

	Dynamic Semantics
	Examples

	Static Semantics
	Object Types

	Conclusion

