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Abstract
Object-based languages with dynamic type systems are popular
because they accelerate the development of short programs. As
larger programs are built with those languages, static analyses
become important tools for detecting programming errors.

We define such an analysis as a type system for an imperative
object-based calculus and prove its type soundness. The calculus
models essential features of the JavaScript language, as an example
of a typical and widely used dynamically-typed, object-based lan-
guage. The model includes objects as property maps, type change
during object initialization, and precise support for JavaScript’s
prototype mechanism.

As a more general technical contribution, our work demon-
strates that the idea of recency abstraction can be transferred from
abstract interpretation to a type system. We model recency infor-
mation with a notion of precise object pointers that enables strong,
type changing updates of object types during a generalized initial-
ization phase. The same precise object pointers allow for an ac-
curate treatment of the prototype mechanism. Unlike linear types,
precise object pointers can be nested and mixed arbitrarily with or-
dinary, imprecise object pointers in the type of a data structure.

1. Introduction
Modern web applications are abundant with dynamic features
like animations, pop-down menus, drag-and-drop, and wysiwyg-
editors, just to name a few. While there are a number of toolkits at
various degrees of abstraction to develop such applications (GWT
[15], dojo [7], scriptaculous [23], and many more), there is still a
number of significant applications written directly in JavaScript.

Despite tremendous efforts and progress in IDEs and debug-
gers, the development of such native JavaScript applications still
suffers from numerous problems. One source of these problems
is the weak, dynamic type system of JavaScript and its prototype-
based nature.1 Another host of problems is introduced by differ-

1 This paper does not address features or problems of the upcoming 4th edi-
tion (ES4) of the language [9]. Instead, it discusses the JavaScript language
as it is shipped with current browsers, which is roughly in line with the
ECMAScript standard [8]. Due to the installed browser base, this language
will remain in the focus of web developers for some years to come. The
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ent implementations of the browser API by different vendors. Al-
though the latter problems are equally severe from a practical point
of view, this paper concentrates on the typing problems. As many
other scripting languages (like Python, Ruby, PHP, Lua, Perl, Tcl)
are dynamically typed and object based, any progress in analyzing
JavaScript programs can find fruitful application to the analysis of
properties for other scripting languages as well.

1.1 Problems with Typing JavaScript
Weak, dynamic typing means in JavaScript that values are subject
to extensive type conversion rules at run time. While each value is
created at a certain type and keeps the type during its lifetime, a
use of the value can convert it implicitly into almost any other type.
Only a few of these conversions are forbidden and yield run-time
errors.2 Of the remaining legal conversions, quite a few are coun-
terintuitive or outright undesirable [27]. Thus, an analysis should
be able to generate warnings for conversions that give unexpected
results or have unexpected side effects.

As in many scripting languages, an object in JavaScript is rep-
resented by a property map that associates a value to a property
name. If this value happens to be a function, then the property is
a method, otherwise it is a field of the object. Creating an object
amounts to allocating a new, empty property map and running a
constructor method on this map. The constructor method enters val-
ues into the property map, thus creating fields and methods of the
object. However, the creation of fields and methods is not restricted
to the constructor, but it may happen at any time during execution.

An entry in a property map does not obey any type discipline.
The type of the value assigned to a property can change with ev-
ery assignment. Moreover, as long as a property is not yet as-
signed, accessing it returns the value undefined, which is a reg-
ular JavaScript value. This feature makes it very hard for a flow-
insensitive type system to infer a precise type for a JavaScript ob-
ject: each property is initially undefined, so that the type of a
property would have to be a union type which always includes an
undefined participant.

While such a type system has its merits, its typings yield a very
crude approximation of the true type of a property. One particular
application of such a type system is the test whether the conversion
of a field value to some type fails or may give unexpected results.
This test raises too many false positives if the type of the property
is not sufficiently precise.

An essential feature of JavaScript is its prototype mechanism.
It implements a delegation mechanism, which simulates some no-
tion of single inheritance. Each object has an associated prototype

core features of our analysis, in particular the tracking of prototype links,
will also be useful for analyzing ES4 programs.
2 For example, only a function can be converted to a function and the value
undefined cannot be converted to an object.



1 var proto = { a : ”foo” };
2 function Make () {}; Make.prototype = proto;
3 var obj = new Make (); obj.b = ”gnu”;
4 obj.b; // returns ”gnu”
5 obj.a; // returns ”foo”

Figure 1: Using a prototype in JavaScript. Line 1 creates a new
object with property a set to "foo" and binds it to variable proto.
Line 2 defines a function Make with no arguments and no body;
it always returns undefined and sets the prototype property of
function Make to proto. Line 3 creates a new object using Make as
a constructor. Because of Make’s prototype property, the resulting
object obj is internally linked to proto as its prototype object. The
remaining lines write and read the b and a properties of obj.

object that is set by the constructor. The prototype object provides
default values for properties of the original object. If a property is
not present in the original object, then JavaScript recursively at-
tempts to access the property in the prototype object until it hits
an undefined prototype. However, write accesses directly affect the
original object, not the prototype.

For example, let proto be an object with property a defined to
be "foo" and obj be an object with prototype proto and property
b set to "gnu", as defined in Fig. 1.3 Accessing obj.b immediately
returns the value of the b property whereas obj.a first delegates
the property access to the prototype object proto, which has the
property a and directly returns its value.

1.2 Desiderata for Typing JavaScript
In a dynamically-typed language, each update of a property may
change the type of the property in the object. A type analysis can
keep up with this type change in two ways. Either the analysis is
flow insensitive and assigns a summary type to the property (weak
update) or the analysis is flow sensitive and assigns different types
to the property at different points in the program (strong update).
The exact choice of summary type can range from a simple top type
to a sophisticated union type.

The type-based analysis that we are proposing attempts to pro-
vide the best of both worlds. It targets the typical programming
pattern where the programmer allocates a number of objects and
then performs some initialization on these objects. Usually, no fur-
ther properties are defined after the initialization and the type of the
properties rarely changes. Hence, an analysis should provide for a
flow sensitive initialization phase for each object and then fall back
to flow insensitive typing.

In a prototype-based language, the analysis of property accesses
requires accurate handling of prototype information. In most cir-
cumstances, there is exactly one prototype object for each kind (or
class) of objects in a program. Prototype objects are created, filled
with default values and methods, and then never changed or recre-
ated anymore. Given these properties of prototype objects, a type-
based analysis should be able to answer questions like “does this
object have a prototype?” and “does the prototype have this prop-
erty?” precisely.

1.3 Contributions
• We identify recency information as the key to identify the ini-

tialization phase of an object and to provide proper handling of
prototype objects. An object is recent as long as no further ob-

3 The code is not straightforward because the prototype property is an
internal property which is not directly assignable. Instead, creating an
object with a constructor function (Make in the example), on which the
prototype property is set, establishes the internal prototype property on
the new object.

ject has been allocated at the same new expression. If recency
information is part of a type (an abstraction), then the type (ab-
straction) of a recent object can be subject to strong updating.

• Recency has been discovered and formalized in the context of
abstract interpretation for a first-order imperative language (see
Sec. 2). We show that recency can also be expressed with a
type system by defining a recency-aware calculus. This calculus
has objects and first-class functions, thus our work extends the
notion of recency to object-based and higher-order languages.
The calculus can be considered a core language of JavaScript.

• We prove type soundness for the recency-aware calculus.

Section 2 provides some background information by explaining
the ideas underlying recency abstraction.

Section 3 informally rephrases recency abstraction in terms of
a type system and provides motivating examples. The subsequent
Section 4 contains the formal definitions for the recency-aware
calculus (syntax, dynamic semantics, static semantics).

Next, we establish the metatheory of the recency-aware type
system via a syntactic type soundness proof in Section 5. The tech-
niques used are standard but involved because recency-awareness
requires a novel way of setting up the operational semantics includ-
ing a non-standard substitution.

Section 6 considers extensions, Section 7 discusses related
work, and Section 8 concludes.

2. Recency Abstraction
Balakrishnan and Reps [3] present an analysis that they call
“Recency-Abstraction for Heap-Allocated Storage”. Their goal is
to obtain precise abstractions for pointers to objects in executables.
They exploit this information to optimize dynamic dispatch in C++
binaries to static function calls where possible.

Their general framework is abstract interpretation. They start
off with the standard approach where the analysis associates each
pointer-typed variable with a set of object creation sites. The ab-
stract interpretation of a property access then yields the least upper
bound of the abstract values associated with the property at each
creation site.

Unfortunately, even if the analysis associates exactly one cre-
ation site with a pointer variable, the results returned by abstract
property accesses are still summaries (e.g., least upper bounds)
over the property values of many concrete objects at many differ-
ent times. Thus, if the property a of an object created at program
point ` gets assigned an integer in one place and a string in another
place in the program, an abstract program access will likely return
an uninformative abstract value that approximates both, an integer
and a string. This situation may occur even if there is no program
run such that an object first contains an integer in its property a and
then a string (or vice versa).

The idea of recency abstraction is a simple, but ingenious varia-
tion of this theme. For each creation site `, the analysis keeps track
of two abstractions, one for the object most recently allocated at
` and another for all older objects allocated at `. In consequence,
the abstraction of the most recently allocated object is very pre-
cise. In fact, the concrete value can be used as long as there are no
intervening conditionals. In any case, the most recent abstraction
represents exactly one concrete object at run time, thus the abstract
interpreter can treat any property updates to this object as strong
updates, hence keeping the abstraction of this object as precise as
possible. For the same reason, it is straightforward to track aliasing
for the most recently allocated object.

Balakrishnan and Reps [3] implement recency abstraction by
duplicating the abstract heap into one component which only con-
tains the abstraction of the most recently allocated object of each



1 function f() { return new Object(); /∗Location 0∗/ }
2 var o1 = f(); /∗Location 1∗/
3 o1.a = ”foo”; o1.b = ”gnu”; /∗Location 2∗/
4 var o2 = f(); o2.a = ”moo”; /∗Location 3∗/
5 o2.a = 5; o1.a = 42; /∗Location 4∗/

Figure 2: Example for recency abstraction. Line 1 defines a func-
tion f that always returns a new, empty object. Lines 2-3 create the
object o1 by calling f and set some of its properties. Line 4 does
the same for object o2 and line 5 sets the a property of o2 and o1.

creation site and another component that contains the summary ab-
straction for all other objects of that creation site. Accordingly, ab-
stract pointer values come in two guises, one that points into the
most-recent heap and another that points into the summary heap.

In our terminology, the abstraction associated with a variable
that holds an object allocated at location 0 is either a precise pointer
@0 or an imprecise pointer ◦{0} (in general, there can be a set
of creation sites in an imprecise pointer). To dereference a precise
pointer, the most-recent heap maps each creation site to an abstract
object, where each property contains an abstract value, which may
again be a precise or imprecise pointer. To dereference an imprecise
pointer, the summary heap maps each creation site to an abstract
object, where each property contains an abstract value.

Fig. 2 contains a sample of JavaScript code to illustrate the idea
of recency abstraction. The abstraction of the single creation site
in the program is its location 0 in function f. At location 1, the
program has created one object in variable o1 and all its properties
are undefined. As this object is the one most recently created at
0, its abstraction reflects this empty object exactly. At location 2,
the program has updated the properties a and b of o1 with strings.
As o1 still contains the most recently allocated object with location
0, the abstraction at this program point can still represent the object
{a="foo", b="gnu"} exactly.

The creation of the second 0-labeled object after 2 degrades
o1 to a non-recent object and merges the value of o1 with the
mapping for inexact 0-labeled objects. At 3 the state of the abstract
interpreter is o1 = ◦0, o2 = @0 where @0 is associated with the
object {a="moo"} in the most-recent heap and ◦0 is associated with
the abstract object {a:string, b:string} in the summary heap.

The next two updates concern one precise and one imprecise
pointer. The precise one induces a strong update in the abstract
interpreter and changes the value of the a property of o2. The
imprecise one assigns an integer to the property a of an object
that used to have a property a of type string. The type for 0 in the
summary heap must cater for both possibilities and lifts the type
of a to top. At 4, the final state of the abstract interpreter is thus
o1 = ◦0, o2 = @0 where @0 is associated with {a=5} and ◦0 is
associated with {a:top, b:string}.

The example illustrates a key issue in recency abstraction.
Whenever a new object is created at creation site `, the previous
most recent abstraction must be moved from the most-recent heap
into the summary heap. Its abstract information is merged with the
information of all the other `-objects and its precise pointer de-
moted to an imprecise pointer. Then, the new object is created in
the most-recent heap with a precise pointer that references precise
abstract information. The abstract interpreter can easily perform
this demotion by examining and changing abstract values and by
updating the summary heap at ` to the least upper bound of the old
summary heap cell ` and the most-recent heap cell `.

3. Recency Typing, Informally
This section examines the idea of recency abstraction from a typing
perspective. There are three key points. First, recency distinguishes

between the most recently allocated object and the older ones and
it maintains two abstractions, a most recent one and a summary
one. Second, the abstraction for the most recently allocated object
is subject to strong update. Third, while an abstract interpreter can
move a reference from the most recent heap to the summary heap
at any point in the program, a type system may have to apply
restrictions to stay tractable.

These key points need to be reflected in the design of the oper-
ational semantics and the type system. While this section concen-
trates mainly on the type system it also touches on issues of the
operational semantics.

In addition to the typing environment Γ, the typing judgments
mention two further environments, the summary environment Ω
and the most-recent environment Σ. They keep the summary type
and the most recent type for each abstract location `. An abstract
location is an arbitrary marker attached to a new expression, which
is not necessarily unique. It abstracts the set of store locations re-
turned by the new expression. As the summary abstraction only
supports weak updates, the summary environment is globally the
same for all program points. In contrast, the most recent environ-
ment may change in each expression and is thus threaded through
by the typing judgment.

Ω, Σ, Γ `e e : t ⇒ L, Σ′, Γ′

The judgment also threads the typing environment, because the
demotion of an object from the most recent heap to the summary
heap also changes its type. The component L is an effect and is
explained with the discussion of functions at the end of section 3.2.
There is no separate discussion of methods: They are modeled as
functions stored in object properties.

The language of expressions is not JavaScript, but rather a suit-
able core language with objects and first-class functions. One par-
ticular difference is the new operator, which just creates an empty
object with no properties. To obtain the effect of a JavaScript con-
structor invocation x = newf(. . . ), the following code fragment
would be a first approximation.4

let x = new in
let = (x.c = f) in
let = x.c(. . . ) in

3.1 Object Types
The type of an object is either a precise object type obj(@`) or an
imprecise object type obj(̃ L). A precise object type is very similar
to a singleton reference type [25]. It references one particular entry
in the most recent environment and can keep track of a limited
amount of aliasing. Here is an example, which first constructs an
empty object, copies its pointer to y, defines a property a through
y, and finally reads a through x:5

let x = new` in
let y = x in
let z = (y.a = 5) in x.a

The typing for the final subterm x.a of this expression is

Ω, Σ, Γ `e x.a : int⇒ ∅, Σ, Γ
Σ = [` 7→ [a 7→ int]]
Γ = [x : obj(@`), y : obj(@`), z : udf]

where the typing environment Γ indicates that both, x and y, refer
to the same object in the most recent heap at ` and the most recent

4 This code fragment serves as an incomplete illustration. It ignores the
return value of the method and it does not install a prototype.
5 The examples make liberal use of base types like int, string, and bool
as well as obvious syntax for introducing values of these types, although the
formal calculus does not encompass them.



environment Σ indicates that ` refers to an object which has an
a property of type int and which is otherwise undefined. The
summary environment Ω does not matter in this derivation.

Precise object types enable strong update in the most-recent
environment as the next example demonstrates.

let x = new` in
let y = x in
let z = (y.a = 5) in
let w = (x.a = ”crunch”) in y.a

The typing for the final subterm y.a of this expression is

Ω, Σ, Γ `e y.a : string⇒ ∅, Σ, Γ
Σ = [` 7→ [a 7→ string]]
Γ = [x : obj(@`), y : obj(@`), z : udf, w : udf]

The indirection of object types through the most recent environ-
ment leaves the type of both object pointer unchanged. But the
dereferencing through the most-recent environment changes the
types of the properties visible through either pointer.

This phenomenon explains why an object type must not con-
tain more than one precise pointer. If an object type of the form
obj(@`1, @`2), say, were permitted, then a strong update would be
unsound. To see why, assume that the update at run-time affects the
object abstracted by `1 and suppose there is a further reference to
the other object abstracted by `2. As a strong update would change
the type of both objects, the type for the unchanged `2 object would
become invalid for the run-time object.

The summary environment and imprecise object pointers kick in
as soon as multiple objects are created at the same abstract location.
In the example terms, there are multiple news with the same label
to keep the examples simple. To obtain good precision in practice,
each new in a program should have a unique label.

O`let x = new` in let = x.a = 42 in

O`let y = new` in let = y.a = ”flush” in

O`let z = new` in let = z.a = true in
x.a

(1)

Here is the typing for the final x.a expression

Ω, Σ, Γ `e x.a : > ⇒ ∅, Σ, Γ
Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ [a 7→ bool]]
Γ = [x : obj(̃ {`}), y : obj(̃ {`}), z : obj(@`)]

The typing shows that the summary environment indeed summa-
rizes the types int and string for the property a to the top type>.
The imprecise object pointers contain a singleton set {`} in the ex-
ample. In general, such a type may contain multiple creation sites.
Finally, observe that recency typing would still deduce the typing
z.a : bool if that was the final expression.

It remains to explain the O` expressions that appear now in front
of the new` expressions. These mask expressions are not written
by the programmer, but automatically inserted in an elaboration
phase6. They provide an explicit syntactic marker for moving ob-
jects from the most-recent heap to the summary heap. They do not
act on the expression, but only on the heaps. While masking could
be integrated into the typing rules for new and function applica-
tion, introducing an explicit mask expression serves to modularize
the type system and its soundness proof. In general, the mask car-
ries a set L of labels of the objects that have to be moved. In (1), the
mask appears in front of each new` to move the eventual `-object
to the summary heap.

In general, a mask expression is applied to each let that directly
encloses a new (as in (1)), a function call, or a method call. The

6 The first two examples happen to be type correct even without mask
expressions inserted.

latter mask anticipates demotions that may have to take place inside
the function body. The label on the mask for new` is exactly the
singleton set {`}, whereas the label on the mask for a function call
is inferred during type inference. The typing of a mask expression
OLe requires the demotion of all L-objects in the environment and
in the expression e. Otherwise, the final term x.a of the example
would get stuck on execution: Because the object bound to x has
been moved to the summary heap by the second mask expression,
it cannot be accessed in the most-recent heap, anymore.

3.2 Function Types
This explanation leads to the last and most hairy topic, the treatment
of function calls. Let’s have a look at an example.

O`let x = new` in let = (x.a = 42) in
let f = λ( ).x.a in

O`let y = new` in

O`let z = f(0) in z

(2)

The typing for the final expression z is:

Ω, Σ, Γ `e z : > ⇒ ∅, Σ, Γ
Ω = [` 7→ [a 7→ >]]
Σ = [` 7→ [ ]]
Γ = [ x : obj(̃ {`}),

f : (∅,>×>)
{`}→ (∅,>),

y : obj(̃ {`}),
z : >]

Naively executing the first line of the program substitutes x with a
precise pointer to an object with property a set to an integer, also
in the body of function f . Executing the second line substitutes
f across the object creation in y. The problem is now introduced
by the execution of the third line. The mask moves the precise `-
object into the summary heap, thus making it imprecise, but the
pointer inside f holds on to the precise pointer. Thus, executing
the function call in the fourth line gets stuck on the x.a expression
because the pointer is now dangling.

Our solution to this problem is the introduction of a non-
standard substitution. It treats pointers specially by changing a
precise pointer into an imprecise one on crossing a function bound-
ary. Adoption of non-standard substitution makes the example ex-
pression execute without getting stuck, but it requires the typing
rule for functions to demote the types of all free variables in-
side the function body. The set of the labels of the object types
in these variables becomes part of the effect L of the function type
(Σ2, t0 × t2)

L→ (Σ1, t1). The effect indicates at which locations
the function assumes that precise references for these locations
have been moved to the summary heap before calling the function.
A small change to the example illustrates the necessity of doing so:

O`let x = new` in let = (x.a = 42) in
let f = λ( ).x.a in

O`(f(0))
(3)

Because the non-standard substitution demotes the precise pointer
substituted for x into f , the invocation of f must be preceded by
the O` to move the object pointed to by x into the summary heap!
The ` is evident from the effect annotation of f ’s type

(∅, t× int)
{`}→ (∅, int)

The empty environments ∅ indicate that f does not use the most-
recent environment. In general, the leftmost environment in the
function type specifies the fragment of the most-recent environ-
ment that is passed to the function body whereas the rightmost envi-
ronment is returned from the function and overrides the respective



parts of the most-recent environment at the callsite of the func-
tion. The part t × int indicates the argument type of the function
whereas the int is the result type. The argument type is a pair be-
cause functions can also serve as methods in which case the first
component of the argument type is the type of the receiver object
“self”. See the formal part in Section 4 for more information on the
typing of methods and method invocation.

The following example shows the other use of effects and ex-
plains why the typing judgment has to collect the effect of the ex-
pression.

O`let x = new` in let = (x.a = 42) in
let f = λ( ).new` in

O`let y = f(0) in
x.a

(4)

In this expression, the function f allocates an object at the same
location as the object pointed to by x, which is still live at the point
where f is invoked. The function application replaces the function
call by the function’s body thus exposing the new` expression. As
this expression requires masking to ensure correct execution of the
expression x.a, the effect part of the typing judgment collects the
set of all locations in which the expression allocates objects. This
effect becomes (the other) part of the effect on the function arrow,
so that the type of f is now

(∅, t× int)
{`}→ ([` 7→ [ ]], obj((@`)))

Here, the returned most-recent environment describes the newly
allocated `-object as everywhere undefined. The function returns
a precise pointer to the newly allocated object.

A function can also take a precise object pointer as an argument
as long as its location is not in the function’s effect.

O`1let x = new`1 in let = (x.a = 42) in
let g = λ(z).let x1 = new`2 in let = (x1.b = z) in x1 in

O`let y = g(x) in
x.a

(5)
The type of g now indicates that an `1 object is passed precisely into
the function body, an `2 object is created, and an `2 object which
contains the `1 object in a property is returned from the function
call.

([`1 7→ [a : int]], t× obj(@`1))
{`2}→
([`1 7→ [a : int], `2 7→ [b : obj(@`1)]], obj((@`2)))

4. Recency Typing, Formally
This section defines the syntax and semantics of the recency-aware
calculus, RAC. After defining some notation, § 4.4 introduces a
dynamic semantics tailored for proving type soundness of recency-
aware typing and proves some of its invariants in § 4.5. § 4.6 defines
the type system proper and § 4.7 extends the static and dynamic
semantics with prototypes.

4.1 Syntax
Fig. 3 defines the syntax of expressions in A-normal form [11].
Computations are sequentialized and flattened in our syntax. This
choice simplifies the majority of the typing rules because only the
rule for let has to deal with sequentialization. The price to pay is
a slightly more complicated evaluation rule for let.

A value is either a variable, a lambda abstraction, udf (unde-
fined), or a pointer. A lambda abstraction always takes two param-
eters because it serves as a first-class function and as a premethod
at the same time. When called as a function, the first parameter

Value 3 v ::= x | λ(y, z).e | udf | (q`, i)

Expression 3 s ::= v | v(v) | v.a(v) | new` | v.a | v.a = v

Expression 3 e ::= v | letL x = s in e | OLe
Qualifier 3 q ::= ˜ | @
Location 3 ` ::= l1 | l2 | . . .
Location ⊇ L
Property 3 a

Figure 3: Expression syntax. Phrases marked in gray are not writ-
ten by the programmer. They arise as intermediate steps in the se-
mantics or are inserted automatically by elaboration.

remains unused. When called as a method, the first parameter be-
comes the self parameter. Pointer values (q`, i) are not present in
programs as entered by the programmer. Pointers refer to objects
through a heap and arise in intermediate expressions during execu-
tion. A pointer may be precise or imprecise which is indicated by
q = @ or q = .̃ Its component ` ∈ Location specifies the creation
site of the object. Its i component is a non-negative integer unique
among the objects created at `.

An expression is either a value, a function call, a method call,
an object creation, a mask expression, a property read, a property
write, or a let expression. Except for the let and mask expres-
sions, the subexpressions of all other forms are restricted to values.
The expression new` constructs a new object at creation site ` with
no defined properties. The mask expression OLe is discussed in
Sec. 3.1. The expressions v.a for reading property a of object v
and v.a = v′ for defining property a of object v to be v′ are stan-
dard. The let expression is also standard except for the annotation
L, which is the effect of the header. The effect annotation guides
demotion during substitution (recall that a let expression can be
desugared to a beta redex).

4.2 Notation
The symbol N denotes the set of non-negative integers.

Let fv(e) denotes the set of free term variables in expression e.
The notation e[(x1, . . . xn) 7→ (v1, . . . vn)] stands for the capture-
avoiding, simultaneous substitution of values v1, . . . , vn for the
variables x1, . . . , xn in the expression e.

For a mapping m, dom(m) is the domain of m, i.e., the set
of elements x for which m(x) is defined. The notation m ↓ X
restricts the mapping m such that dom(m ↓ X) ⊆ X . The notation
m ↑ X excludes X from the domain such that X∩dom(m ↑ X) =

∅. The notation A
fin−→ B stands for a partial finite function with

domain A and image B.
The map update m′ = m{x 7→ y} is defined to be m′(x) = y

and m′(x′) = m(x′), for all x′ 6= x.
If m ∈ Property → Value is a property map, then property

access m(a) is defined by

{}(a) = udf
m{a 7→ v}(a) = v
m{b 7→ v}(a) = m(v) a 6= b

For convenience, examples make use of a slightly extended
syntax with integer literals of type int, arithmetic operations, and
syntactic sugar e1; e2 for a let expression let x = e1 in e2 where
x /∈ fv(e2).

4.3 Dynamic Semantics
Fig. 4 defines a straightforward dynamic semantics for RAC. It is
a small-step semantics defined on configurations H, e where H is a
heap and e is an expression. A heap maps a pair (`, i) of a location



HeapContent = (Property
fin−→ Value)

Heap = (Location× N) → HeapContent
H ∈ Heap
h ∈ HeapContent
L ::= � | letL x = s in � | OL�

S0APP H, (λ(y, x).e)(v) →0 H, e[(y, x) 7→ (udf, v)]
S0LET H, let x = v in e →0 H, e[x 7→ v]
S0NEW H, new` →0 H{(`, i) 7→ {}}, (̃ `, i)

if (`, i) /∈ dom(H)
S0READ H, (q`, i).a →0 H, H(`, i)(a)
S0WRITE H, (q`, i).a = v →0 H{(`, i)(a) 7→ v}, udf
S0MCALL H, (q`, i).a(v) →0 H, e[(y, x) 7→ ((q`, i), v)]

if H(`, i)(a) = λ(y, x).e

S0LET′

H, s →0 H ′,L[v]

H, letL x = s in e′′ →0 H ′,L[letL x = v in e′′]

Figure 4: Small-step operational semantics.

and a non-negative integer to some heap content h. A heap content
is always a record, i.e., a finite map from property names to values.
The following compact notation for updates to a heap H collapses
two map updates into one:

H{(l, i)(a) 7→ v} := H{(l, i) 7→ H(l, i){a 7→ v}}

Function application is like beta reduction, but it substitutes udf
for the first argument (the self argument). Reduction of the let
expression is standard. The new expression selects a new, unused
memory location for ` and stores an empty record in the heap.
The read expression extracts the heap content for the argument
location and performs a property access on it. Thus, the result of
a read expression may be udf. The write expression updates the
heap content at address (`, i) with the property map, which is in
turn updated according to the write expression. The method call
expects a function stored in a property. It executes this function
by performing a beta reduction applied to the receiving object
pointer (q`, i) and to the parameter v. The final context rule for
let expressions forces the header of the let to be evaluated first. If
beta reduction yields a value that is wrapped in an L context, then
the rule reestablishes A-normal form by swapping the let with the
context.

This semantics is close to existing semantics for object-based
languages with premethods. However, it is not suitable for proving
the soundness of the recency-aware type system defined in Sub-
section 4.6, because the operational model does not distinguish be-
tween the most recently allocated object of a creation site and the
objects previously allocated at the same site.

The next subsection rephrases the dynamic semantics to make
it more palatable to the soundness proof. The resulting refined
dynamic semantics splits the heap in two parts, corresponding to
the idea of the recency abstraction, and has an explicit operation to
transfer objects from one heap to the other.

4.4 Refined Dynamic Semantics
The refined dynamic semantics also uses small-step operational
style. A configuration is a triple (H, H0, e) with two heaps, the
summary heap H and the most-recent heap H0, and an expression
e. The most-recent heap contains —at most— the most recently
allocated object for each creation site, the summary heap contains
all other objects.

The two heaps are disjoint but share a common address space,
Location×N. There are two kinds of references, precise references
(@`, i) that refer to the most-recent heap and imprecise references
(̃ `, i) that refer to the summary heap. A newly created object
always starts out with a precise reference.

There is no restriction on the nesting of precise and imprecise
references in data structures. A precise reference can point to an
object that contains an imprecise reference and vice versa. The
latter facility is key to the ability of RAC to treat prototypes in
a satisfactory manner.

The reduction relation is expected to preserve the following
invariant of a configuration:

INV1 For each abstract location, there exists at most one object in
the most-recent heap.

The price for splitting the heap in two parts is a more compli-
cated formulation of the reduction rules and the introduction of the
mask expression OLe, as explained in Sec. 3.1.

4.4.1 Elaboration of Mask Expressions
With the refined dynamic semantics, an expression requires elab-
oration before it can be executed without getting stuck. Mask ex-
pressions are not present in programs entered by the programmer.
An elaboration phase prior to execution wraps a mask expression
around every let expression that contains a function call, method
call, or new expression. The L annotation is the effect of the let
header and thus inferred by the typing algorithm.

4.4.2 Demotion of References
The semantics of the mask expression and the definition of substi-
tution rely on an operation e\L that demotes precise references for
locations L in expression e to imprecise ones. Demotion extends
homomorphically to heaps and heap contents, which are treated as
mappings. If L is omitted, then L = Location.

x\L = x
(λ(y, x).e)\L = λ(y, x).e
udf\L = udf

(q`, i)\L =

(
(̃ `, i) if ` ∈ L

(q`, i) if ` /∈ L

H\L = λ(`, i).H(`, i)\L

h\L = λa.h(a)\L

(H, H0)
\L = H\L ∪HL, H\L

0 \HL

where HL = H\L
0 ↓ {(`, i) | ` ∈ L, i ∈ N}

By invariant INV-LAM, which is stated and proved in Sec. 4.5,
demotion need not proceed into the body of a lambda abstraction.
The last line defines the demotion on a pair of a summary heap and
a most-recent heap to include the movement of objects from the
latter to the former. HL is the subset of the most-recent heap—
after demotion of its objects according to L—containing those
objects which are stored in locations involving L. These objects
are transferred to the summary heap and at the same time removed
from the most-recent heap (both after demotion).

4.4.3 Substitution
Substitution is the second major operation needed to define the re-
fined semantics. Unfortunately, the presence of precise and impre-
cise references requires a non-standard notion of substitution, as
discussed in Sec. 3.2.

The required notion of substitution of a variable x by a value
v in e, e{x Z⇒ v} (defined in Fig. 5), behaves like a standard
substitution but on entering the body of an abstraction (second
substitution rule for a lambda abstraction) it additionally demotes
the value v. Demotion of v with respect to L is also needed when



(letL y = s in e)
{x Z⇒ v}

= letL y = s{x Z⇒ v} in
(e{x Z⇒ v\L})

y{x Z⇒ v} =

(
y if x 6= y

v if x = y

(λ(y, z).e){x Z⇒ v} =

(
λ(y, z).e if x ∈ {y, z}
λ(y, z).(e{x Z⇒ v\}) if x /∈ {y, z}

udf{x Z⇒ v} = udf
(q`, i){x Z⇒ v} = (q`, i)
(v1(v2)){x Z⇒ v} = v1{x Z⇒ v}(v2{x Z⇒ v})
new`{x Z⇒ v} = new`

(v1.a){x Z⇒ v} = v1{x Z⇒ v}.a
(v1.a = v2){x Z⇒ v} = v1{x Z⇒ v}.a = (v2{x Z⇒ v})
(v1.a(v2)){x Z⇒ v} = v1{x Z⇒ v}.a(v2{x Z⇒ v})
(OLe){x Z⇒ v} = OL(e{x Z⇒ v\L})

Figure 5: Substitution.

applying the substitution to the body of a letL y = s in e
expression and the mask expression OLe. The L annotation on the
expression declares the set of creation sites for which new objects
may have been created during execution of e. All other cases are
standard. Simultaneous substitution of xi by vi in e is defined in
the obvious way and written as e{(x1, . . . , xn) Z⇒ (v1, . . . , vn)}.

4.4.4 Reduction Rules
Each read or write operation in the semantics requires the manip-
ulation of two heaps H and H0, as specified in the auxiliary read
and write operations that operate directly on pairs of heaps.

(H, H0)(q`, i) :=

(
H(`, i) if q =˜

H0(`, i) if q = @

(H, H0){(ql, i)(a) 7→ v} :=

(
H{(l, i)(a) 7→ v}, H0 if q =˜

H, H0{(l, i)(a) 7→ v} if q = @

Fig. 6 contains the reduction rules. The SMASK rule demotes
the heaps with respect to a set L of locations. It moves all L-objects
from the precise heap to the imprecise one. The SAPP rule is beta
reduction with the extra proviso that the first argument is set to
udf. The SLET rule is entirely standard. The SNEW rule creates
a new, empty object at an address which is unused in both heaps
and yields a precise reference to this object. The rules SREAD
and SWRITE rely on the auxiliary read and write operations to
dispatch the reference to the appropriate heap. The write operation
returns udf. The method call SMCALL uses the same mechanism
to access the method stored in the object and then performs beta
reduction with the receiver object as for parameter. The SLET′ rule
is a contextual rule analogous to S0LET′.

4.5 Properties of the Dynamic Semantics
This subsection formally states and proves some invariants for
reduction of elaborated expressions in RAC. INV1 states that for
each abstract location, there exists at most one object in the most-
recent heap.

This invariant and the ones to follow do not hold for arbitrary
configurations but only for configurations reachable from a closed,
elaborated expression and empty heaps, i.e., ∅, ∅, e.

Lemma 1 Suppose that ∅, ∅, e −→∗ H ′, H ′
0, e

′ for a closed, elab-
orated expression e. Then INV1 holds for H ′, H ′

0, e
′.

Type 3 t ::= obj(p) | (Σ, t× t)
L→ (Σ, t) | > | udf

p ::= L̃ | @`

HeapType 3 r ∈ Property
fin−→ Type

GlobalEnv 3 Ω ::= ∅ | Ω(` : r)
LocalEnv 3 Σ ::= ∅ | Σ(` : r)
TypeEnv 3 Γ ::= ∅ | Γ(x : t)

Figure 7: Type syntax.

Invariant INV-LAM for an expression e states that, for all
lambda expressions λ(y, x).e0 occurring in e, the body e0 of the
lambda never contains a precise reference (@`, i).

Lemma 2 Suppose that ∅, ∅, e −→∗ H ′, H ′
0, e

′. Then INV-LAM
holds for H ′, H ′

0, e
′.

Proof. The base case of the induction is the observation that the
initial expression as entered by the programmer does not contain
references.

For the inductive step, it must be shown: If INV-LAM holds for
e and H, H0, e −→ H ′, H ′

0, e
′, then INV-LAM holds for e′.

Simple inductive proof on the definition on −→. Only substi-
tution can insert a reference in the body of a lambda abstraction,
but the definition of substitution demotes all such references before
substituting into the body of the lambda. �

The invariant INV-DIS states that the domains of the summary
heap and the most-recent heap do not overlap. Let H, H0, e be a
configuration.

INV-DIS dom(H) ∩ dom(H0) = ∅.

Lemma 3 If ∅, ∅, e −→∗ H ′, H ′
0, e

′, then H ′, H ′
0 fulfills INV-

DIS.

Proof. The base case is obvious as both heaps are empty.
For the inductive step, we have to prove: If H, H0 fulfills INV-

DIS and H, H0, e −→ H ′, H ′
0, e

′, then H ′, H ′
0 fulfills INV-DIS.

This proof is by induction on the definition of reduction −→.
Only the cases for mask and new expressions are interesting as the
other reductions do not modify the heaps.

By SMASK, H, H0, E [OLe] reduces to (H, H0)
\L, E [e\L].

That is H ′ = H\L ∪ HL and H ′
0 = H\L

0 \HL where HL =
H\L

0 ↓ {(`, i) | ` ∈ L, i ∈ N}. Thus, the new configuration is
H ′, H ′

0, E [e\L] and dom(H ′)∩dom(H ′
0) = (dom(H)∪dom(HL))∩

(dom(H0) \ dom(HL)) = dom(H) ∩ (dom(H0) \ dom(HL)) ∪
dom(HL) ∩ (dom(H0) \ dom(HL)) = ∅ ∪ ∅ = ∅.

By SNEW, H, H0, E [new`] −→ H, H0{(`, i) 7→ {}}, E [(@`, i)],
for some (`, i) /∈ dom(H) ∪ dom(H0). The last condition directly
implies that dom(H) ∩ (dom(H0) ∪ {(`, i)}) = ∅. �

4.6 Static Semantics
The type language defined in Figure 7 distinguishes object types,
function types, the top type, and the type udf (undefined). An ob-
ject type obj(p) always refers indirectly to a heap type r either via
a local environment Σ (corresponding to the most-recent heap) or
via a global environment Ω (corresponding to the summary heap).
Both environments are regarded in the obvious way as mappings
from locations to heap types. The choice between the two envi-
ronments is made by the reference type p. If p = @`, then p is a
precise reference which refers to entry Σ(`) in the local environ-
ment. If p = L̃, then p is an imprecise reference which refers to
all the entries Ω(l), for l ∈ L, in the global environment. A heap



SMASK H, H0, OLe −→ (H, H0)
\L, e

SAPP H, H0, (λ(y, x).e)(v) −→ H, H0, e{(y, x) Z⇒ (udf, v)}
SLET H, H0, let

L x = v in e −→ H, H0, e{x Z⇒ v}
SNEW H, H0, new

` −→ H, H0{(`, i) 7→ {}}, (@`, i) if (`, i) /∈ dom(H) ∪ dom(H0)
SREAD H, H0, (q`, i).a −→ H, H0, (H, H0)(q`, i)(a)
SWRITE H, H0, (q`, i).a = v −→ (H, H0){(q`, i)(a) 7→ v}, udf
SMCALL H, H0, (q`, i).a(v) −→ H, H0, e{(y, x) Z⇒ ((q`, i), v)} if (H, H0)(q`, i)(a) = λ(y, x).e

SLET′

H, H0, s −→ H ′, H ′
0,L[v]

H, H0, let
L x = s in e′′ −→ H ′, H ′

0,L[letL x = v in e′′]

Figure 6: Refined small-step operational semantics.

type r is a record type describing heap contents. The type language
includes recursive types by adopting a co-inductive interpretation
for the grammar of types t. This convention avoids extending the
type language with a special rec operator.

The function type (Σ2, t0 × t2)
L→ (Σ1, t1) distinguishes two

arguments, the self argument t0 and the function parameter t2,
and a local environment Σ2 considered as a third argument. A
function yields a result type t1 and an updated local environment
Σ1. Intuitively, the function threads the local environment through
its body. The argument local environment describes the objects
which are passed precisely to the function, whereas the resulting
local environment describes those which are returned precisely
from the function. The location set L on the arrow is the latent
allocation effect of the function. It contains all locations for which
the function expects no object in the most-recent heap on entry. For
example, the function may allocate an object at such a location.

The top type > is the supertype of all other types. The type udf
is a singleton type that only contains the value udf.

The typing environment Γ is standard.
There are two typing judgments,

• Ω, Γ `v v : t states the type of a value v and
• Ω, Σ, Γ `e e : t ⇒ L, Σ′, Γ′ states the type of an expression.

Besides the typing environment Γ, both typing judgments rely on
the heap typings Ω for the summary heap. The type of an expres-
sion also depends on the most-recent heap Σ. As expressions per-
form computations that change the heaps, the expression judgment
yields a new typing Σ′ for the most-recent heap and a new type
assumption Γ′. The new type assumption is needed because some
object types may have to be downgraded from precise references
to imprecise ones, e.g., when a new object is created at the same
location. The final outcome of the expression rule is a set L of lo-
cations. It stands for the allocation effect of e, i.e., a superset of the
set of locations at which an object may be created during execution
of e.

4.6.1 Typing of Values
Subtyping is only needed for values in our system. Figure 8 defines
the subtyping relation. It is reflexive, > is the maximal type, and
an imprecise pointer type can be subsumed by one with a larger set
of locations. A function type behaves invariantly in the arguments,
covariantly in the result type, and also covariantly with respect to
the effect annotation.

Lemma 4 The subtyping relation <: is transitive.

Figure 9 contains the typing rules for values. The standard rules
UNDEFINED, OBJECT, VARIABLE, and SUBSUMPTION present no
surprises. The rule FUNCTION, however, is one of the main work

t <: t t <:>
L ⊆ L′

obj(̃ L) <: obj(̃ L′)

dom(Σ1) = dom(Σ′
1)

(∀l ∈ dom(Σ1), ∀a ∈ Property) Σ1(l)(a) <: Σ′
1(l)(a)

t1 <: t′1 L ⊆ L′

(Σ2, t0 × t2)
L→ (Σ1, t1) <: (Σ2, t0 × t2)

L′
→ (Σ′

1, t
′
1)

Figure 8: Subtyping.

UNDEFINED
Ω, Γ `v udf : udf

OBJECT
Ω, Γ `v (q`, i) : obj(q`)

VARIABLE
Γ(x) = t

Ω, Γ `v x : t

SUBSUMPTION
Ω, Γ `v v : t t <: t′

Ω, Γ `v v : t′

FUNCTION
dom(Σ1) ⊆ dom(Ω)

dom(Σ2) ⊆ dom(Ω) dom(Σ2) ∩ L = ∅
L′ ∪ L′′ ⊆ L Γ′ = Γ ↓ fv(λ(y, x).e)

L′ = Locs(Γ′) Γ′′ = (Γ′)\L′
Ω, Σ2 `Γ Γ′ C Γ′′

Ω, Σ2, Γ
′′(y : t0)(x : t2) `e e : t1 ⇒ L′′, Σ1, Γ

′′′(y : t′0)(x : t′2)

Ω, Γ `v λ(y, x).e : (Σ2, t0 × t2)
L→ (Σ1, t1)

Figure 9: Typing rules for values.

horses of the type system. It has to deal with the complications
illustrated by the examples in Section 3.2: precise references for
location ` must not sneak past allocations of new `-references.

This problem has two facets, both of which are treated using
effects [14]. The first problem is that a variable may hold a value
with a precise pointer type obj(@`) when a function/method is
invoked which allocates a new object at ` (see example (4) in
Sec. 3.2). The solution is to equip each function type with an
allocation effect, i.e., the set L′′ of locations for which the function
may allocate a new object. If each call to the function is guarded
by a OL′′

, then all precise pointers ` ∈ L′′ are demoted before
entering the function’s body.

The second problem arises from the definition of substitution. It
preventively demotes pointers as soon as the substitution proceeds
into the body of a lambda abstraction. However, this demotion may
be too conservative as the (demoted) imprecise pointer in the body



Locs( L→ ) = Locs(>) = Locs(udf) = Locs(∅) = ∅
Locs(obj(@`)) = {`}
Locs(obj(̃ L)) = L
Locs(Γ(x : t)) = Locs(Γ) ∪ Locs(t)

Figure 10: Locations in types and environments.

of the lambda may still be identical to the most recent precise
pointer on invocation of the lambda, as in example (3) in Sec. 3.2.7

Again, effects and mask come to our rescue. Let Γ′ be the
typing environment of the lambda restricted to the free variables
of the lambda. The set L′ = Locs(Γ′) in the function rule collects
the precise and imprecise locations mentioned in the types of the
free variables of the function (see Fig. 10 for the definition). It
constructs the environment Γ′′ = (Γ′)\L′

for the function body by
demoting all types with respect to L′, corresponding to the action
of the substitution on pointers. It further adds L′ to the effect of the
function so that the mask operation around the function invocation
moves any precise L′-pointer to the summary heap.

As every demotion implies a move of a reference from the
most-recent heap to the summary heap, the corresponding heap
typing environments have to be related at the same instant. The flow
relation between the original and the demoted type environments
serves exactly this purpose: Ω, Σ2 `Γ Γ′ C Γ′′. It compares the
entries in Γ′ and Γ′′ pointwise and make the summary environment
Ω reflect the current state in Σ2 wherever Γ′ has a precise reference
and Γ′′ has an imprecise one. (See Fig. 12 for the definition of the
flow relation.)

Finally, the rule uses the L-annotation on the function arrow to
signal to the application site of the function the set of those loca-
tions that should be moved to the summary heap before entering
the function. These comprise the precise references according to
L′ and the locations in L′′ which indicate potential new object cre-
ations in the body of the lambda.

4.6.2 Typing of Expressions
Figure 11 contains the typing rules for expressions. The VALUE
rule expresses that evaluation of a value has no effect on the heap.
Hence, the environments are passed through unchanged.

The rule LET sequentializes computations. The L-effect of the
header becomes the decoration of the let (which determines the
way substitution works). The L-effects of header and body are
merged to obtain the effect of the whole expression. The type

7 A type system where precise pointers can be substituted in lambdas is
conceivable, but it is not obvious how to proceed. Consider the following
example:

O`let x = new` in
let f = λ(z).(x, z) in
O`let y = new` in

O`let w = f(y) in w

After line two, the type environment would contain x : obj(@`) and

f : ([` 7→ [ ]], t0× obj(@`))
L→ ([` 7→ [ ]], obj(@`)× obj(@`)), which

is consistent with the substitution of a precise pointer for x in the body
of f . However, after line three these types have to change to x : obj(̃ `)

and f : ([` 7→ [ ]], t0 × obj(@`))
L→ ([` 7→ [ ]], obj(̃ `) × obj(@`)).

While the type change of x corresponds straightforwardly to an application
of demotion, the change of f ’s type does not: it contains three occurrences
of obj(@`), but only one of them changes to ˜̀ . Having read or write
operations in the body of the function aggravates matters even further.
On the other hand, the operational semantics could be easily adapted to deal
with this situation because at the time the type of f changes, there is only
one precise pointer present in the body of the function.

VALUE
Ω, Γ `v v : t

Ω, Σ, Γ `e v : t ⇒ Σ, Γ

LET

dom(Σ) ∩ L1 = ∅ Σ = Σ\L1 Γ = Γ\L1

L1 ⊆ L L2 ⊆ L Ω, Σ, Γ `e s1 : t1 ⇒ L1, Σ1, Γ1

Ω, Σ1, Γ1(x : t1) `e e2 : t2 ⇒ L2, Σ2, Γ2(x : t′1)

Ω, Σ, Γ `e let
L1 x = s1 in e2 : t2 ⇒ L, Σ2, Γ2

MASK
(∀l ∈ L) Ω, Σ `t obj(@l) C obj(̃ l)

Σ′ = Σ\L ↑ L Ω, Σ′, Γ\L `e e : t ⇒ L, Σ′′, Γ′′

Ω, Σ, Γ `e OLe : t ⇒ L, Σ′′, Γ′′

FUNCTION CALL

Γ = Γ\L

Σ = Σ\L dom(Σ) ∩ L = ∅ Ω, Σ `t udf C t0

Ω, Γ `v v2 : t2 Ω, Γ `v v1 : (Σ, t0 × t2)
L→ (Σ1, t1)

Ω, Σ, Γ `e v1(v2) : t1 ⇒ L, Σ1, Γ

METHOD CALL

Γ = Γ\L Σ = Σ\L

dom(Σ) ∩ L = ∅ Ω, Γ `v v1 : obj(p) obj(p) <: t0

Ω, Γ `v v2 : t2 Ω `r p.a : (Σ, t0 × t2)
L→ (Σ1, t1)

Ω, Σ, Γ `e v1.a(v2) : t1 ⇒ L, Σ1, Γ

NEW

Γ = Γ\` ` ∈ dom(Ω) l /∈ dom(Σ) Σ = Σ\`

Ω, Σ, Γ `e new
` : obj(@`) ⇒ {`}, Σ(` 7→ {}), Γ

READ
Ω, Γ `v v : obj(p) Ω, Σ `r p.a : t

Ω, Σ, Γ `e v.a : t ⇒ ∅, Σ, Γ

WRITE
Ω, Γ `v v : obj(ql)

Ω, Γ `v v′ : t′ Ω, Σ `w ql.a = t′ ⇒ Σ′

Ω, Σ, Γ `e v.a = v′ : udf⇒ ∅, Σ′, Γ

Figure 11: Typing rules for expressions.

and most-recent environments are threaded through the header to
the body. The L1-effect of the header also determines the set of
locations that must not be passed precisely into the let header:
The conditions dom(Σ) ∩ L1 = ∅, Σ = Σ\L1 , and Γ = Γ\L1

enforce this restriction, which is crucial in the proof of progress.
The MASK rule types the expression that moves all precise

references with locations in L from the most-recent heap to the
summary heap. As in the FUNCTION rule, this move must be
reflected in the summary heap environment with flow judgments:
(∀l ∈ L) Ω, Σ `t obj(@l)Cobj(̃ l). In addition, these references
are removed from the most-recent heap: Σ′ = Σ\L ↑ L. The most-
recent heap and the demoted type environment are threaded through
the body of the mask expression. The result type is taken over. The
final Σ′′ may not have any relation with the incoming Σ′.

The FUNCTION CALL rule is driven by the L-effect of the
function type. It requires that Γ and Σ do not contain L-precise
references (by using a OL . . . expression). It sets the self parameter
of the function to udf, matches the second argument type with the
type of the argument v2, and yields the return type t1.



The METHOD CALL rule first extracts the function’s type from
the property of the object and then works similarly. The type of the
first argument is the type of the receiver object. The preconditions
can be fulfilled by wrapping the method call in a mask expression.

The NEW rule defines the typing for object creation. As objects
are always created exactly and without preinitialized properties,
the return type is obj(@`) and the most-recent heap environment
registers the binding ` 7→ {}. The other preconditions guarantee
that no precise `-reference exists when the new `-object is created.

The READ rule is straightforward. It relies on an auxiliary judg-
ment that performs a lookup either in the summary environment or
in the most-recent one, depending on the precision of the reference.

The WRITE rule is similar. The auxiliary judgment returns a
new most-recent environment because it performs a strong update
on precise reference types. The write expression returns udf.

4.6.3 Auxiliary Judgments
Figure 12 defines some auxiliary judgments used in the typing
rules. The first group of rules defines the flow judgment Ω, Σ `t

t C t′. It forces the type of a reference to flow from the most-recent
environment Σ to the summary environment Ω if that reference has
been converted from precise to imprecise (from t to t′). The first
rule, dealing with the object type, is the most important one: If
an `-reference changes from precise to imprecise, then the corre-
sponding entries in Σ and Ω must be flow related. The last rule
then pushes the flow into the objects’ properties, and then (most of
the time) the second rule relates the property types by subtyping.
For example, if Σ(`) = udf then Ω(`) can be either udf or >.

The second group defines the read judgment Ω, Σ `r p.a : t,
which executes the abstract read operation from property a of
reference p. The type of a precise reference comes straight from
the most-recent environment. The type of an imprecise reference
spread over locations in L is a supertype of the types at all locations.

The third group defines the write judgment Ω, Σ `w p.a = t ⇒
Σ′, which performs a write operation to property a of reference p.
The value to be stored has type t and the write returns a modified
most-recent environment Σ′ in case p is a precise reference. Writ-
ing to an imprecise reference (first rule) just places a constraint on
the summary environment: the type in the store must subsume the
type t of the written value. Writing to a precise reference does not
affect the summary environment, but changes the respective loca-
tion in the most-recent environment.

4.7 Prototype Extension
This subsection demonstrates how to extend RAC with the full
prototype mechanism. Fig. 13 defines the calculus RAC′ as an
extension to syntax, operational semantics, and typing of RAC.
RAC′ has an enhanced version of object creation, new`(v). Its
reduction rule SNEW′ initializes a reserved prototype property pt
of the new object to v. This property is not to be used in user code.

The read reduction rule SREAD′ replaces the SREAD rule in
Fig. 6. The read operation first looks into the value v obtained by
reading the object itself. It returns v unless v = udf. Otherwise, if
a prototype is defined for the object, it delegates the lookup to the
prototype. If the property is undefined and the prototype is not an
object, the read operation returns udf.

The typing rule for new is revised to deal with the prototype
argument and to install it in the newly created object. The prototype
argument is an arbitrary value.

All other typing rules remain the same, but the auxiliary judg-
ment to read a property needs to be revised. It mimics the op-
erational semantics in descending the object along the prototype
chain, returning the value when the property is found and passing
the property read on to the prototype if one exists.

Ω, Σ `t t C t′

` ∈ L ` /∈ dom(Σ) ∨ Ω, Σ `h Σ(`) C Ω(`)

Ω, Σ `t obj(@`) C obj(̃ L)

t <: t′

Ω, Σ `t t C t′
(∀a ∈ Property) Ω, Σ `t r(a) C r′(a)

Ω, Σ `h r C r′

Ω, Σ `r p.a : t
Σ(`)(a) = t

Ω, Σ `r @`.a : t

(∀` ∈ L) Ω, Σ `r ˜̀ .a : t

Ω, Σ `r L̃.a : t

Ω(`)(a) = t

Ω, Σ `r ˜̀ .a : t

Ω, Σ `w p.a = t ⇒ Σ′ (∀` ∈ L) t <: Ω(`)(a)

Ω, Σ `w L̃.a = t ⇒ Σ

Ω, Σ `w @`.a = t ⇒ Σ(` : Σ(`)[a 7→ t])

Figure 12: Rules for flow, reading, and writing to the heap.

Writing of a property is not affected by prototypes because the
write operation only affects the top-level object and ignores the
prototype chain [8].

5. Metatheory
This section presents the type soundness result forRAC. The basic
structure of the proof follows Felleisen and Wright [30], with a type
preservation and a progress lemma. The progress lemma turns out
to be surprisingly hard to establish. Beyond mere typing, it requires
a number of invariants about program execution.

A few auxiliary lemmas are needed to prove the substitu-
tion lemma: the subtype relation is a subset of the flow relation
(Lemma 5), the influence of the effect on the typing environment
(Lemma 6), and the typing of a value after demotion (Lemma 7).

Lemma 5 If t <: t′ holds, then ∀Ω, Σ : Ω, Σ `t t C t′

Lemma 6 If Ω, Σ, Γ `e e : t ⇒ L, Σ′, Γ′ then Γ′ = Γ\L.

Lemma 6 says that the typing environment that is returned from
the expression judgment can be computed from the incoming typ-
ing environment by applying demotion to it. In consequence, the
judgment could be simplified by omitting the returned typing en-
vironment. However, this choice diminishes the readability of the
rules for let and mask expressions and thus leads to a less intuitive
formulation of the type system.

Lemma 7 If Ω, Σ, Γ `v v : t, then Ω, Σ′, Γ\L `v v\L : t\L, for
arbitrary Σ′.

Proof. Observe that t <: t′ implies t\L <: t′\L. �

Lemma 8 (Substitution) Suppose that Ω, Σ, ∅ `v v : tx and
Ω, Σ, Γ(x : tx) `e e : t0 ⇒ L, Σ′, Γ′.

Then Ω, Σ, Γ `e e{x Z⇒ v} : t0 ⇒ L, Σ′, Γ′.

To state and prove typing preservation and then progress, we ex-
tend the notion of typing to configurations with closed expressions
in the obvious way as shown in Fig. 14.



Additional syntax

e ::= · · · | new`(v)

Additional reductions

SNEW′ H, H0, −→ H, H0[(`, j) 7→ {pt 7→ v}],
new`(v) (@`, j)

if (`, j) /∈ dom(H) ∪ dom(H0)
SREAD′ H, H0, −→ H, H0,

(p, i).a read(H, H0, (p, i), a)

read(H, H0, (p, i), a) =

8><>:
v if v 6= udf

(q, i).a if v = udf ∧ pt = (q, i)

udf otherwise
where pt = (H, H0)(p, i)(pt)

v = (H, H0)(p, i)(a)

Changes in the static semantics
NEW’

Γ = Γ\`

` ∈ dom(Ω) \ dom(Σ) Σ = Σ\` Ω, Σ, Γ `v v : t

Ω, Σ, Γ `e new
`(v) : obj(@`) ⇒ {`}, Σ(` 7→ {pt 7→ t}), Γ

(∀` ∈ L) Ω, Σ `r ˜̀ .a : t t <: t′

Ω, Σ `r L̃.a : t′

(Ω, Σ)(p)(a) = t 6= udf

Ω, Σ `r p.a : t

(Ω, Σ)(p)(a) = udf
(Ω, Σ)(p)(pt) = obj(q) Ω, Σ `r q.a : t

Ω, Σ `r p.a : t

(Ω, Σ)(p)(a) = udf (Ω, Σ)(p)(pt) 6= obj(())

Ω, Σ `r p.a : udf

Figure 13: Extension to support prototypes.

Ω, Σ 
 H, H0 Ω, Σ, ∅ `e e : t ⇒ L, Σ′, ∅
Ω, Σ 
e H, H0, e : t ⇒ L, Σ′

dom(Σ) ⊆ dom(Ω)
(∀(`, i) ∈ dom(H0)) ` ∈ dom(Σ) ∧ Ω, Σ 
o H0(`, i) : Σ(`))
(∀(`, i) ∈ dom(H)) ` ∈ dom(Ω) ∧ Ω, Σ 
o H(`, i) : Ω(`))

Ω, Σ 
 H, H0

(∀a ∈ dom(h)) a ∈ dom(r) ∧ Ω, Σ, ∅ `v h(a) : r(a)

Ω, Σ 
o h : r

Figure 14: Typing of heaps and configurations.

Lemma 9 (Typing Preservation) Suppose that Ω, Σ 
e H, H0, e :
t ⇒ L′, Σ′′ and H, H0, e −→ H ′, H ′

0, e
′.

Then there exists some Σ′, t′, and L′′ such that Ω, Σ′ 
e

H ′, H ′
0, e

′ : t′ ⇒ L′′, Σ′′ with Ω, Σ′ `t t′ C t and L′′ ⊆ L′.

Working towards progress, the invariant INV-CLS states closed-
ness of a configuration with respect to the heap: Any reference
contained in one of the heaps or in the expression is defined in one
of the heaps. An auxiliary definition simplifies the statement of the
invariant. Define (q`, i) ∈ H, H0 by

• (̃ `, i) ∈ H, H0 iff (`, i) ∈ dom(H) ∪ dom(H0) and
• (@`, i) ∈ H, H0 iff (`, i) ∈ dom(H0).

While this relation leads to a provable invariant, it is insufficient
for proving progress: Additional information is needed that states
when an imprecise reference can definitely be found in the sum-
mary heap! Such references appear exactly in unblocked contexts:

An unblocked context U` for an imprecise reference (̃ `, i) is
defined for all L such that ` /∈ L and arbitrary L′ as

U` ::= � | v(�) | �.a(v) | v.a(�) | OLU` | �.a | �.a = v

| v.a = � | letL′
x = U` in e | letL x = s in U`

| λL(y, x).�

where the L-annotation on the lambda expression stands for the
effect of the lambda’s body.

INV-CLS holds for a configuration H, H0, e if:

1. e is closed.

2. If (q`, i) occurs in e, then (q`, i) ∈ H, H0.

3. If e = U`[(̃ `, i)], then (`, i) ∈ dom(H).

4. For all (`, i) ∈ dom(H)∪dom(H0), if h = (H ∪H0)(`, i)
then, for all a ∈ dom(h),

(a) if (q`′, i′) occurs in h(a), then (q`′, i′) ∈ H, H0 and

(b) if h(a) = (̃ `′, i′), then (`′, i′) ∈ dom(H).

The invariant INV-CLS holds only for typed configurations.

Lemma 10 Suppose that Ω, Σ 
e H, H0, e : t ⇒ L, Σ′.
If H, H0, e fulfills INV-CLS and H, H0, e −→ H ′, H ′

0, e
′ then

H ′, H ′
0, e

′ fulfills INV-CLS.

Proof. By induction on the definition of reduction −→.

Lemma 11 (Progress) Suppose that Ω, Σ 
e H, H0, e : t ⇒
L, Σ′, so that INV-CLS holds for the configuration.

Then either e is a value or there exists H ′, H ′
0, e

′ such that
H, H0, e −→ H ′, H ′

0, e
′.

Proof. Induction on e. Some illustrative cases are:

• Case e = (̃ l, i).a. INV-CLS yields that (l, i) ∈ dom(H).
Hence SREAD is applicable.

• Case e = (@l, i).a. Analogous to e = (̃ l, i).a.
• Case e = (̃ l, i).a(v). The invariant INV-CLS yields that

(l, i) ∈ dom(H). Inversion of the typing and heap consis-
tency ensures that H(l, i)(a) is a function. Hence SMCALL is
applicable.

Type soundness can now be concluded in the usual way from
type preservation and progress.



6. Extensions
The recency-aware type system requires some extensions to be-
come usable in practice. For the sake of simplicity, the paper does
not include their formalization. However, they are straightforward
to add and do not lead to new insights.

Recursion can be handled in the static semantics by a sim-
ple change of the typing rule FUNCTION to deal with recursive
functions fixf(y, z).e. The change is to add the assumption (f :

(Σ2, t0 × t2)
L→ (Σ1, t1)) to Γ′′ when deriving the type of e. The

change in the operational semantics is also straightforward:

H, H0, (fixf(y, x).e)(v)
−→ H, H0, e{(f, y, x) Z⇒ (fixf(y, x).e, udf, v)}

In JavaScript, there is a subtle difference between an object that
lacks a property and an object that has a property set to udf. While
this difference cannot be observed by dereferencing the property,
a prototype object can be used to distinguish these two cases.
To address this phenomenon, our type system would have to be
extended with another unset state for the properties of an object.
This unset state would be propagated by the type system just like
any other type of a record field.

The top type> used in the type system is a crude approximation
of the behavior desired in practice. As the type system does not
provide elimination rules for the > type, a value of this type cannot
be processed any more. Instead of the uninformative > we would
rather include a dynamic type or a discriminative sum type that
subsumes the types of the values that flow into it. Again, we have
avoided to model such a dynamic type because we have already
investigated this issue in previous work [27] and its addition to
RAC would obscure the current presentation.

7. Related Work
The original ideas of using creation sites for abstracting heap struc-
tures as well as the per-program-point approximation of the heap
are due to Jones and Muchnick [17, 18].

The notion of strong update is due to Chase et al [6]. Their
analysis relies on complicated rules involving a per-program-point
“storage shape graph” and no correctness argument is given. The
present work reduces the storage shape information to the infor-
mation in the (per-program-point) most-recent environments and it
comes with a correctness proof.

Our type system has some relation to must-alias analysis [1] and
uniqueness typing [5]. Indeed, while the imprecise type obj(̃ L)
expresses may-alias information, the precise type obj(@`) ex-
presses that all variables of this type refer to the same object. The
information conveyed is different from uniqueness, which guaran-
tees that some variable holds the only reference to a heap object. A
commonality to Altucher and Landi’s approach [1] is that their ob-
ject names also refer exactly to the most recently allocated object
of a particular creation site. Thus, answering a question raised in
previous work [16], the idea of their approach can be extended to a
higher-order language.

Smith, Walker, and Morrisett [25, 29] have considered alias
types as an extension of linear types for typing low-level intermedi-
ate languages. Their calculus models object initialization, i.e., type
changing assignments to heap records, thus it would be a suitable
target language for modeling type change in a scripting language.
Alias types rely on separating the types of pointer values from the
actual store contents, just like our division between the object types
and the heap typing environments. Their pointer values are single-
ton types of the form ptr(l), where l stands for a single store loca-
tion, they rely on existential quantification to specify recursive data
structures, and explicit coercion operations are needed to pack and
unpack existentials and to roll and unroll recursive data types. In

contrast, our object type obj(@`) with a precise reference is also
a singleton type standing for a particular location but this location
depends on the current execution state. Our obj(̃ L) type has an
existential-type flavor and it can model recursive data structures.
However, the precision is significantly lower than with alias types
because our setting does not support operations to unpack and to
unroll. This difference is not surprising as the alias types system is
a prescriptive, explicitly typed calculus with decidable type check-
ing whereas our calculus is descriptive, implicitly typed, and has a
typing algorithm.

Fähndrich and Xia’s delayed types [13] also provide a means
of treating object initialization. An object with a delayed type does
not have to fulfill its invariants, yet. The example in their paper
is typechecking not-null types. Our calculus could be put to use
for a similar analysis; at present, with delayed types the program-
mer provides an explicit boundary when the invariants must hold,
whereas our calculus tracks information about an object exactly as
long as possible and reverts to less precise summary information
when it is no longer avoidable. We expect that the recency attribute
holds sufficiently long to cover the initialization phase, but further
investigation is required to confirm this expectation.

Kehrt and Aldrich [19] explore an imperative variant of Abadi
and Cardelli’s object calculus with delegation, linear object types,
and linear methods. As long as objects have a linear type, their
method suite and delegatee can be changed as typical in an initial-
ization phase. Later on, the programmer can drop linearity of an
object at the price of making it immutable. Recency can achieve
similar objectives without requiring the object to be linear. The ob-
ject loses its special status only when the next object is allocated at
the same abstract location. Objects that are not most-recent can also
be updated, but the effect of this update cannot be traced precisely
in the type.

Previous work involving the second author [16] has defined the
notion of singleness. Singleness is a property of a variable that im-
plies must-alias information. A variable x is single at expression e
if all executions leading to e cause all bindings for x to be identi-
cal. As this property is variable-oriented and not connected to the
notion of recent allocation, it is quite incomparable to the present
work, although the results could be used for similar purposes.

Might and Shivers [21] extend control flow analysis with ab-
stract garbage collection and abstract counting, the abstract coun-
terpart of reference counting. A superficial look suggests a relation
to RAC, which cannot be substantiated: An object with a precise
reference type @` does not imply that the same object would have
an abstract count of one. Indeed, the current summary heap might
contain an arbitrary number of reachable imprecise references of
type ˜̀ . RAC does not support any notion of garbage collection.
The computation of linearities in Foster et al’s “Flow-sensitive type
qualifiers” [12] has properties very similar to abstract counting.

Anderson et al [2] define a type system for JavaScript that
comes with a type inference algorithm. Their work considers a
similar core language than our work. Their type system is based
on an extension of record types by a definedness indicator on each
record component. The latter records whether a record component
is definitively initialized or whether it may be uninitialized. Thus,
they do not model type change and they do not consider prototypes.
We conjecture that our system can type check all programs that
Anderson’s system can check (it can type check all examples in that
work). In addition, our system treats type change and prototypes.

In previous work, the second author has proposed a type system
for JavaScript [27]. The prime objective of that system was the
study of a dynamic typing approach that enables to detect the
“undesirable conversions” discussed in the introduction with high
precision. The present work is fully complementary to the previous
work. A practical system would have to build on a combination



of both works and it would have to encompass the entirety of the
language as formalized by Maffeis and others [20].

While the two previously discussed works may be called de-
scriptive, there are also researchers treating scripting language typ-
ing from the prescriptive point of view. Prominent examples are
the work on typed Scheme [28] and the work on the next version of
JavaScript [9]. Their goal is to enrich untyped languages gradually
with type assertions and contracts and thus transition over time to
an explicitly typed language. The work on gradual typing [24] has
similar goals.

Bono and Fisher [4] consider an imperative object calculus with
object extension and encapsulation. The goal of their calculus is
to demonstrate that classes and inheritance can be implemented in
an object-based calculus if it provides the said extension and en-
capsulation. Their calculus distinguishes prototypes (which are ex-
tensible and overridable records, but do not allow for subtyping)
from objects (which are no longer modifiable, but admit subtyp-
ing). Overwriting of fields or methods with a different type is not
possible. They define a sound and complete typing algorithm. This
work extends Fisher’s thesis [10], which considers a functional cal-
culus with similar features and with a mytype mechanism which
does not include a typing algorithm.

8. Conclusion
The idea of a recency abstraction can be fruitfully transported to a
type system. This type system is amenable to analyzing programs
in scripting languages, in particular handling object initialization.
Its distinguishing feature compared to previous approaches is the
ability to handle type changes and prototypes precisely.

An implementation of a type inference algorithm is work in
progress. Once that implementation is in place, an evaluation of
its usefulness on fragments of JavaScript programs can take place.

As future work, location and store polymorphism may be worth-
while additions. In the present system, a function can only manip-
ulate values created at a fixed set of locations and the typing of the
ignored part of the most-recent heap must coincide at all call sites
of the function.

Another worthwhile avenue would be to consider adding type
states [26] to this kind of type system. However, it is unclear if the
present facilities are sufficient.
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