
JSConTest
Contract-Driven Testing of JavaScript

Code

Phillip Heidegger, Peter Thiemann

Albert-Ludwigs-Universität Freiburg

01.07.2010



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Introduction

JavaScript is the language of the Web

99.3%
of all websites use JavaScript

(http://w3techs.com)

How do we ensure that they work correctly and
reliably?



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Introduction

JavaScript is the language of the Web

99.3%
of all websites use JavaScript

(http://w3techs.com)

How do we ensure that they work correctly and
reliably?



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Introduction

JavaScript is the language of the Web

99.3%
of all websites use JavaScript

(http://w3techs.com)

How do we ensure that they work correctly and
reliably?



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Unit Testing



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

What do we want to test?

• Does the program crash?
• Does the program behave as intended by

the programmer?
(expressed by contracts)



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Contributions

• Contract language for JavaScript
• Random testing based on contracts
• Guided random testing to improve coverage
• Contract monitoring
• Implemented in the JSConTest tool



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Simple Type Contracts

1 /∗∗ int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗∗ (int,int)→ bool ∗/
5 function p(x,y) {
6 if (x != y) {
7 if (f(x) == x + 10) return ”false”; // contract violation
8 };
9 return true;
10 };



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Random Testing with Contracts

• Type signature-like contracts
• Type contract in argument position:
⇒ random generator

• Type contract in result position:
⇒ contract checker



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Contract Demo

Demo - ex1.html



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Distribution of Test Values

1 /∗∗ (int,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• random generator for int uniformly distributed
⇒ P(x = 10) ≈ 2−32

⇒ uniformly distributed generators are not always a
good choice



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Distribution of Test Values

1 /∗∗ (int,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• random generator for int uniformly distributed
⇒ P(x = 10) ≈ 2−32

⇒ uniformly distributed generators are not always a
good choice



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract

1 /∗∗ (int@numbers,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• annotate the int contract with @numbers.

⇒ Changes the probability distribution
⇒ Generates random expressions with numbers from

the source program
⇒ Usually locates the violation in less than 10 test runs



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract

1 /∗∗ (int@numbers,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• annotate the int contract with @numbers.
⇒ Changes the probability distribution
⇒ Generates random expressions with numbers from

the source program
⇒ Usually locates the violation in less than 10 test runs



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract – Demo

Demo - ex1a.html



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract

1 /∗∗ (int@numbers,int@numbers,int@numbers)→ bool ∗/
2 function fut 1(x,y,z) {
3 if ((x∗3 + 5 == y∗5 + 4) && (x∗2 − 1 == z∗9 − 1))
4 return ”false”; // contract violation
5 return true;
6 };

• complex conditional→ difficult to archive high
coverage

• Our approach detects the violation in less than 5 sec



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract

1 /∗∗ (int@numbers,int@numbers,int@numbers)→ bool ∗/
2 function fut 1(x,y,z) {
3 if ((x∗3 + 5 == y∗5 + 4) && (x∗2 − 1 == z∗9 − 1))
4 return ”false”; // contract violation
5 return true;
6 };

• complex conditional→ difficult to archive high
coverage

• Our approach detects the violation in less than 5 sec



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract for Objects

1 /∗∗ (object)→ bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest)
4 return ”false”; // contract violation
5 return true;
6 };

• Blindly generating random objects does not lead to
high coverage

• How to guide the random generator for objects?



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Guided Contract for Objects

1 /∗∗ (object@labels)→ bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest)
4 return ”false”; // contract violation
5 return true;
6 };

• Annotation @labels

• Generator prefers to use the labels inside of the
function body

⇒ Raises probability to generate a property with names
p or quest



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Contract Monitoring

1 /∗∗ int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗∗ (int,int)→ bool ∗/
5 function g(x,y) {
6 return (f(x ∗ ”3O”) == 60);
7 }

• Where is the bug?

→ Programmer wrote O instead of zero.
• Does not violate the contract of g.
• But violates the contract of f.



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Contract Monitoring

1 /∗∗ int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗∗ (int,int)→ bool ∗/
5 function g(x,y) {
6 return (f(x ∗ ”3O”) == 60);
7 }

• Where is the bug?
→ Programmer wrote O instead of zero.
• Does not violate the contract of g.
• But violates the contract of f.



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Contract Monitoring

• JSConTest generates assertions for checking
argument and result contracts (pre- and
postcondition)

• If during a run of g, the contract of f is violated, the
assertions report this violation



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Huffman Encoding

• Take textbook algorithm
• Specify the behavior of the code
• Custom contract for Huffman Trees (13 loc)
• Annotations to functions (3 loc)



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Huffman Encoding

• After contract specification we found
• a typing error in our code
• a bug inside of the contract specification

• To check the effectivity of contract checking:
We applied mutators to the Huffman Code
• 88% of the mutated programs were rejected
• 12% pass

• manual inspection of the 12% shows that they
behave correct with respect to the (type) specification

⇒ JSConTest detects type errors reliably



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Related Work

• K. Claessen, J. Hughes, QuickCheck, ICFP 2000
• C. Csallner, Y. Smaragdakis, JCrasher, SPE 2004
• Guha, Matthews, Findler, Krishnamurthi,

Relationally-Parametric Polymorphic Contracts, DLS
2007



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Conclusion
• Contract language for JavaScript
• Random testing and contract monitoring
• Guided random testing to improve coverage
• Implemented in the JSConTest tool

Future Work
• Minimization of counterexamples
• Transactions for JavaScript (Side Effects)
• Extension of contract language to describe side

effects



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Conclusion
• Contract language for JavaScript
• Random testing and contract monitoring
• Guided random testing to improve coverage
• Implemented in the JSConTest tool

Future Work
• Minimization of counterexamples
• Transactions for JavaScript (Side Effects)
• Extension of contract language to describe side

effects


	Introduction
	Intro

	Random Testing
	Random Testing

	Guided Random Testing
	@numbers
	@labels

	Monitoring
	Example

	Case Study
	Case Study

	Related Work
	Related Work

	Conclusion
	Conclusion


