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Introduction

JavaScript is the language of the Web

99.3%
of all websites use JavaScript

(http://w3techs.com)

How do we ensure that they work correctly and
reliably?
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Unit Testing
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What do we want to test?

• Does the program crash?
• Does the program behave as intended by

the programmer?
(expressed by contracts)
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Contributions

• Contract language for JavaScript
• Random testing based on contracts
• Guided random testing to improve coverage
• Contract monitoring
• Implemented in the JSConTest tool
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Simple Type Contracts

1 /∗∗ int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗∗ (int,int)→ bool ∗/
5 function p(x,y) {
6 if (x != y) {
7 if (f(x) == x + 10) return ”false”; // contract violation
8 };
9 return true;
10 };
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Random Testing with Contracts

• Type signature-like contracts
• Type contract in argument position:
⇒ random generator

• Type contract in result position:
⇒ contract checker
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Contract Demo

Demo - ex1.html
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Distribution of Test Values

1 /∗∗ (int,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• random generator for int uniformly distributed
⇒ P(x = 10) ≈ 2−32

⇒ uniformly distributed generators are not always a
good choice
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Guided Contract

1 /∗∗ (int@numbers,int)→ bool ∗/
2 function p(x,y) {
3 if (x != y) {
4 if (f(x) == x + 10) return ”false”; // contract violation
5 };
6 return true;
7 };

• annotate the int contract with @numbers.

⇒ Changes the probability distribution
⇒ Generates random expressions with numbers from

the source program
⇒ Usually locates the violation in less than 10 test runs
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Guided Contract – Demo

Demo - ex1a.html
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Guided Contract

1 /∗∗ (int@numbers,int@numbers,int@numbers)→ bool ∗/
2 function fut 1(x,y,z) {
3 if ((x∗3 + 5 == y∗5 + 4) && (x∗2 − 1 == z∗9 − 1))
4 return ”false”; // contract violation
5 return true;
6 };

• complex conditional→ difficult to archive high
coverage

• Our approach detects the violation in less than 5 sec
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Guided Contract for Objects

1 /∗∗ (object)→ bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest)
4 return ”false”; // contract violation
5 return true;
6 };

• Blindly generating random objects does not lead to
high coverage

• How to guide the random generator for objects?
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Guided Contract for Objects

1 /∗∗ (object@labels)→ bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest)
4 return ”false”; // contract violation
5 return true;
6 };

• Annotation @labels

• Generator prefers to use the labels inside of the
function body

⇒ Raises probability to generate a property with names
p or quest
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Contract Monitoring

1 /∗∗ int→ int ∗/
2 function f(x) { return 2 ∗ x; };
3

4 /∗∗ (int,int)→ bool ∗/
5 function g(x,y) {
6 return (f(x ∗ ”3O”) == 60);
7 }

• Where is the bug?

→ Programmer wrote O instead of zero.
• Does not violate the contract of g.
• But violates the contract of f.
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Contract Monitoring

• JSConTest generates assertions for checking
argument and result contracts (pre- and
postcondition)

• If during a run of g, the contract of f is violated, the
assertions report this violation



Introduction Random Testing Guided Random Testing Monitoring Case Study Related Work Conclusion

Huffman Encoding

• Take textbook algorithm
• Specify the behavior of the code
• Custom contract for Huffman Trees (13 loc)
• Annotations to functions (3 loc)
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Huffman Encoding

• After contract specification we found
• a typing error in our code
• a bug inside of the contract specification

• To check the effectivity of contract checking:
We applied mutators to the Huffman Code
• 88% of the mutated programs were rejected
• 12% pass

• manual inspection of the 12% shows that they
behave correct with respect to the (type) specification

⇒ JSConTest detects type errors reliably
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Related Work

• K. Claessen, J. Hughes, QuickCheck, ICFP 2000
• C. Csallner, Y. Smaragdakis, JCrasher, SPE 2004
• Guha, Matthews, Findler, Krishnamurthi,

Relationally-Parametric Polymorphic Contracts, DLS
2007
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Conclusion
• Contract language for JavaScript
• Random testing and contract monitoring
• Guided random testing to improve coverage
• Implemented in the JSConTest tool

Future Work
• Minimization of counterexamples
• Transactions for JavaScript (Side Effects)
• Extension of contract language to describe side

effects
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