
Recency Types for Analyzing Scripting
Languages

Phillip Heidegger and Peter Thiemann

Albert-Ludwigs-Universität Freiburg, Germany
{heidegger,thiemann}@informatik.uni-freiburg.de

Abstract. With the current surge of scripting technologies, large pro-
grams are being built with dynamically typed languages. As these pro-
grams grow in size, semantics-based tools gain importance for detecting
programming errors as well as for program understanding.
As a basis for such tools, we propose a descriptive type system for an im-
perative call-by-value lambda calculus with objects. The calculus models
essential features of JavaScript, a widely used dynamically-typed lan-
guage: first-class functions, objects as property maps, and prototypes.
Our type system infers precise singleton object types for recently allo-
cated objects. These object types are handled flow-sensitively and change
during the objects’ initialization phase. The notion of recency provides
an automatic criterion to subsume these precise object types to summary
object types, which are handled flow-insensitively. The criterion applies
on a per-object basis. Thus, the type system identifies a generalized ini-
tialization phase for each object during which the change of its value
is precisely reflected in the change of its type. Unlike with linear types,
summary types may refer to singleton types and vice versa.
We prove the soundness of the type system and present a constraint-
based inference algorithm. An implementation is available on the web.

1 Introduction

Dynamic features like animations, pop-down menus, and drag-and-drop are
abundant in modern web applications. Many of these applications are imple-
mented in JavaScript and rely on existing toolkits for realizing the dynamic
features (Dojo, Prototype, Yahoo! UI, Scriptaculous, . . .). However, these ap-
plications quickly become unmanageable because JavaScript provides neither
namespace management nor data encapsulation. In addition, there are dubious
language features which make it hard to write reliable programs [7].

Despite ongoing efforts in the construction of IDEs and debuggers, the de-
velopment and maintenance of a JavaScript application suffers from numerous
problems. Besides the aforementioned encapsulation issues, another host of prob-
lems is introduced by incompatible implementations of the browser’s DOM-API
by different vendors. A third major source of problems is the weak, dynamic
type discipline of JavaScript and its prototype-based nature.

This paper concentrates on the typing aspect as type information can be
helpful in all three problem areas. A type clash may hint at an encapsulation

1 var jstgp = { title: ”JavaScript: The Good Parts” };
2 var dc = { name: ”Douglas Crockford” };
3 // jstgp.author === undefined
4 // dc.book === undefined
5 jstgp.author = dc;
6 dc.book = jstgp;
7 jstgp.author.name;

(a) Bookstore.

1 function f (i, l) {
2 if (i == 0) return l;
3 var cell = new emptyCell();
4 cell.value = i;
5 cell.next = l;
6 return f (i−1, cell);
7 }

(b) List of integers.

Fig. 1. JavaScript examples.

problem; type information aids debugging and can provide hints to IDEs; and
type information can contribute to addressing the incompatible browser problem.
Last but not least, types are also useful for optimizing an implementation. As
many other scripting languages (Python, Ruby, PHP, Lua, etc) are also dynam-
ically typed and object-based, any progress in analyzing JavaScript programs
can find fruitful application to analyzing programs in those languages as well.

1.1 Descriptive Types for Scripting Languages

To illustrate the problems that a type system for a scripting language must
overcome, consider the JavaScript code in Fig. 1(a). The first two lines create
objects with string-valued properties title and name. Lines 5 and 6 extend these
objects with new properties that make the objects refer to one another. The last
line accesses the name property of the author of the jstgp object.

Typing this code with a flow-insensitive type system would not be satisfac-
tory, as each object would be assigned one type for its entire lifetime. Here is
why: Accessing jstgp.author in line 3 yields undefined whereas the access in line 7
yields the dc object. Hence, the type of jstgp.author must be the top type > as it
has to subsume both undefined and an object type. However, with this type, the
expression jstgp.author.name is no longer type correct because the .name selector
expects an object type as its argument.

Hence, the type system must be flow-sensitive and admit strong updates which
change the type of an object according to the assignments to its properties.
Strong update is vital to obtain precise object types in the presence of ob-
ject extension and property update. Our type system achieves it by relying
on singleton object types, which also keep track of aliasing to some extent.
In line 3 of the example, the types of the objects are jstgp : obj(@1) and
dc : obj(@2) where 1 and 2 are the abstract locations of these objects. A
separate heap type specifies the contents of each object using a record type:
[@1 7→ {title : string},@2 7→ {name : string}]. While the variable types remain
fixed in this example, the heap type changes at each line to [@1 7→ {title :
string, author : obj(@2)},@2 7→ {name : string, book : obj(@1)] at line 7. Thus,
each assignment in the example changes the type of an object in the heap type
and the type of jstgp.author.name in line 7 is string. This strong update is possible
because each entry in the heap type describes exactly one object at run time.

2

In general, the type of an object cannot remain singleton and flow-sensitive
throughout the whole program, as Fig. 1(b) shows. The function f builds a list-
like structure where each cell is first created empty in line 3 and its properties
are assigned subsequently. The type of cell starts out as obj(@3) and the heap
type evolves from [@3 7→ {}] to [@3 7→ {value : number, next : tl}] after line 5,
where tl is the type of the argument l. As f invokes itself recursively, the type tl
must be related to the type of cell. If tl = obj(@3), the object creation in line 3
would overwrite the information about l in the heap type, which is not correct.

To deal with such situations, our type system introduces flow-insensitive
summary object types, which refer to a second heap type maintained by our
system, the summary heap type. This heap type is globally available and it is
fixed throughout the whole program. At any time, a singleton object type can be
demoted into a summary object type at the price of losing strong updatability.

In the example, the type of the cell object must be demoted before passing
the object as a parameter to f because the function allocates a new object at the
same abstract location where the cell object resides. Hence, at line 6, demotion
changes the type of cell to obj(̃ 3), the summary object type for location 3,
removes the binding for @3 from the heap type, and requires the summary heap
type to contain [̃ 3 7→ {value : number, next : obj(̃ 3)}] (or at least to have 3̃
point to a suitable super type). With this demoted type of cell, there is now
a consistent type for function f. Its argument types are number and obj(̃ 3)
and its result type is obj(̃ 3), too. The corresponding summary heap type is
[̃ 3 7→ {value : number, next : obj(̃ 3)}]. Thus, at any given point in a program,
there may be up to two object types defined for each abstract location: the
globally available summary heap type contains the type for an object of type
obj(̃ `) and the heap type may contain the information for obj(@`) if a suitable
object exists.

1.2 Introducing Recency

The concept of recency [3] enables the automatic introduction of demotions. An
object is recent after an execution step if it was either created in the execution
step or if it was recent after the preceding step and the current step does not
create a new object at the same abstract location.

Consequently, our type system assigns every new object a singleton object
type. It keeps the type precise as long as it can guarantee that the object is
recent. In Fig. 1(b), recency of the object at @3 gets lost at the recursive call of
f, which may create a new object with abstract location 3.

Studies by Vitek and coworkers [18] as well as by Jensen and coworkers [15]
have shown that recency fits the typical initialization pattern in JavaScript pro-
grams where the programmer allocates a number of objects and then initializes
them. Quite often, no further properties are added after the initialization and
the type of the properties rarely changes. During the initialization phase, each
object is recent and its type can be updated in a flow-sensitive manner. Later
on, when the object is no longer recent, its shape does not change anymore and
it falls back to flow-insensitive typing.

3

1.3 Contributions and Outline

– We define a core calculus for scripting languages.
– We define a type system for the calculus that supports flow-sensitive and

flow-insensitive typings for objects. Switching between the two modes is
based on recency. Our system is the first formalization of recency with a
type system in a higher-order setting.

– We prove type soundness. The proof is technically involved because recency-
awareness requires a novel way of setting up the operational semantics in-
cluding a non-standard substitution.

– We sketch the design of a type inference algorithm and provide an imple-
mentation on the web.1

§2 informally explains recency abstraction in terms of a type system and
provides motivating examples. §3 defines syntax and dynamic semantics of the
recency-aware core-calculus. §4 defines its static semantics. Next, §5 establishes
the type soundness of the recency-aware type system. § 6 considers an extension
to support prototypes, §7 gives an overview of our implementation, §8 discusses
related work and §9 concludes.

A technical report with all proofs is available on the web [13].

2 Recency Typing, Informally

Recency is straightforward to handle in an abstraction interpretation setting
[3, 15], but lifting the concept to types requires some care. There are four key
points that need to be reflected in the design of the type system. First, there
must be distinct types for recent objects and the remaining ones: singleton and
summary object types. Second, singleton object types must be subject to strong
update. Third, singleton object types must be “demotable” to summary types.
Fourth, while an abstract interpreter can demote a singleton object to a summary
object “online” at the respective new expressions, a type system must demote
more conservatively to stay tractable.

This section anticipates the syntax defined in §3, but writes e1; e2 for let z =
e1 in e2 (z /∈ fv(e2)) and uses values of base types like int, string, and bool
in the examples, although the formal calculus does not encompass them.

2.1 Types for Objects

There are two distinct kinds of object types, singleton ones obj(@`) and sum-
mary ones obj(̃ L), where the L stands for a set of locations. Locations are
markers attached to each new expression in the program. Markers are usually
distinct, but that is not required.

A first version of the typing judgment Ω,Σ, Γ `e e : t ⇒ Σ′, Γ ′ relates a
summary heap environment Ω, a singleton heap environment Σ, a type environ-
ment Γ , and an expression with a type t and updated versions of the singleton
1 http://proglang.informatik.uni-freiburg.de/JavaScript/.

4

let x = newl in

let y = x in

y.a := 5;
x.a

(a) Aliasing.

let x = newl in

let y = x in

y.a := 5;
x.a := ”crunch”;
y.a

(b) Strong updates.

\llet x = newl in x.a := 42;

\llet y = newl in y.a := ”flush”;

\llet z = newl in z.a := true;
x.a

(c) Summary Objects.

Fig. 2. Examples — objects.

environment Σ′ and the typing environment Γ ′. Both heap environments map
abstract locations to object descriptions and the type environments map vari-
ables to types.

A singleton object type references an entry in the singleton environment.
The example in Fig. 2(a) constructs an empty object, copies its reference to
y, assigns to property a through y, and finally reads a through x. The typing
for the final subterm x.a of this expression is Ω,Σ, Γ `e x.a : int⇒ Σ,Γ with
Σ = [l 7→ [a 7→ int]] and Γ = [x : obj(@l), y : obj(@l)]. The typing environment
Γ indicates that both, x and y, refer to the same object at l and the singleton
environment Σ indicates that l refers to an object which has an a property of
type int and which is otherwise undefined.2

Singleton object types enable strong update in the singleton environment
as the example in Fig. 2(b) demonstrates. The typing for the final subterm
y.a is Ω,Σ, Γ `e y.a : string ⇒ Σ,Γ with Σ = [l 7→ [a 7→ string]] and
Γ = [x : obj(@l), y : obj(@l)]. The assignment updates Σ, but it does not affect
the object types. The typing of a property access dereferences the environment
and yields the updated type.

Summary object types arise as soon as multiple objects are created with the
same abstract location (Fig. 2(c)). Here is the typing for the final expression x.a:

Ω,Σ, Γ `e x.a : > ⇒ Σ,Γ
Ω = [l 7→ [a 7→ >]], Σ = [l 7→ [a 7→ bool]]

Γ = [x : obj(̃ {l}), y : obj(̃ {l}), z : obj(@l)]

The summary environment joins the types int and string for the property a to
the top type >. The summary object types contain the set {l} in the example.
There are singleton and summary object types for the same abstract location l.

The expression \Le is a demotion which changes the type of all L-objects
from singleton to summary before evaluating e. In Fig. 2(c), a demotion appears
at each newl because an existing l-object loses its recency at that point. As our
operational semantics maintains two distinct heaps (singleton and summary)
corresponding to the distinct heap environments, a demotion actually moves
objects from the singleton heap to the summary heap. The examples in this sec-
tion contain explicit demotions to demonstrate their behavior, but a programmer
never has to write demotions, because our analysis infers their placement.
2 The summary environment Ω does not matter in this derivation.

5

\llet x = newl in

let f = λ .x.a in

x.a := 42;

\llet y = newl in

y.a := 12;

\llet z = f(0) in z
(a) Functions.

\llet x = newl in

let f = λ .x.a in

x.a := 42;

\l(f(0))

(b) Effects 1.

\llet x = newl in x.a := 42;

let g = λ .newl in

\llet y = g(0) in x.a

(c) Effects 2.

Fig. 3. Examples — functions.

2.2 Function Types

Let’s turn to functions. Consider naively executing the example in Fig. 3(a).
After the first line, x contains a reference to a newly allocated l-object in the
singleton heap. The second line binds f to a closure, which captures this single-
ton reference and which is applied in line 6. However, before f is applied, the
demotion in line 4 moves the l-object into the summary heap. This demotion is
needed because a new l-object is created. However, the closure in f now contains
a dangling reference to the singleton heap because the referenced object has been
moved away. Hence the invocation of f in line 6 would result in a crash.

One approach to the problem would have demotion affect the captured ref-
erences in a closure. However, changing a reference from singleton to summary
affects its type and with it the type of the closure. So this approach is not viable.

The alternative, which we have opted for, is that free variables of functions
never have singleton object types. We maintain this invariant by ensuring that
substitution into a function body changes singleton references to summary ref-
erences. This choice requires that the objects directly referenced in the free
variables get demoted before the function is called. To ensure this demotion,
the function type is equipped with an effect L that contains the locations of
the object types in the free variables as well as the locations where the function
allocates new objects. Each call site must perform a demotion \L before invoking

the function. In Fig. 3(a), the type of f is (∅, int) {l}→ (∅, int), a function that
expects an integer and returns one, where the ∅ components state that no recent
objects are passed to or returned from the function. Because the first l-object
loses its recency with the demotion in line 4, the description of the l object in
the summary heap is Ω(l) = [a 7→ int]. Hence, the return type of function f as
well as the type of z is int.

The demotion \l in the last line is not required in this example, but it does
hurt because it does not affect a reference captured in f , either. Our analysis
inserts it because f has effect l. The example in Fig. 3(b) shows that the inserted
demotion is needed, in general. Here, f is invoked without an intervening creation
of a new l-object, so that the object captured by f is still recent at the function
call. As the substitution of x into f has changed the captured singleton reference
to a summary reference, the demotion in line 4 is needed to move the object into

6

the summary heap. Thus, when f is invoked its captured reference points to the
correct heap.

In general, the type of a function is (Σ2, t2)
L→ (Σ1, t1) where Σ2 and Σ1 are

heap types for recent objects passed to the function and returned from it. The
singleton heap type at the call site may contain more locations than Σ2 and,
similarly, Σ1 specifies only the returned fragment of the heap type. L is the set
of locations that the function body assumes demoted, as already discussed.

The last example, Fig. 3(c), shows the other use of effects. Function g al-
locates an object at the same location as the object pointed to by x, which
is live and recent at the point where g is invoked. Inlining the function call ex-
poses the newl expression. As this expression requires demotion to ensure correct
execution of the expression x.a, the effect on the function arrow also contains
all locations in which the expression allocates objects. Hence, the type of g is

(∅, int) {l}→ ([l 7→ { }], obj(@l)). The returned singleton environment describes
the newly allocated l-object as everywhere undefined. The function returns a
singleton reference to the newly allocated object.

While a singleton reference cannot be captured in a free variable of a function
it can be passed as an argument, unless its location is in the function’s effect.

\l1let x = newl1 in x.a := 42;

let h = λx.
`
let x1 = newl2 in x1.b := x; x1

´
in

\l2let y = h(x) in x.a

(1)

The type of h indicates that a singleton l1-object is passed into the function
body, an l2-object is created, and an l2-object which contains the l1-object in
property b is returned.

h : ([l1 7→ [a : int]], obj(@l1))
{l2}→ ([l1 7→ [a : int], l2 7→ [b : obj(@l1)]], obj(@l2))

3 The Recency-Aware Calculus

This section defines the syntax and semantics of the recency-aware calculus,
RAC. First some notation is needed. We write Z for the set of integers and
fv(e) for free term variables in expression e. A

fin−→ B is the set of finite maps m
from A to B, with {} denoting the empty map. dom(m) is the domain of map
m. m ↓ X restricts m to domain dom(m) ∩ X. m ↑ X restricts m to domain
dom(m) \X. m{x 7→ y} is map update: if m′ = m{x 7→ y}, then m′(x) = y and

m′(x′) = m(x′), if x′ 6= x. m$a is property access for m ∈ Prop
fin−→ Value. It is

defined by {}$a = udf, m{a 7→ v}$a = v, and m{b 7→ v}$a = m$a, if a 6= b.

3.1 Syntax

Fig. 4 defines the syntax of expressions in A-normal form. A-normal form sequen-
tializes the control flow inside a function. It slightly complicates the evaluation
rule for let, but simplifies the typing rules and the proofs by reducing the num-
ber of context rules to the one for let expressions.

7

Value 3 v ::= x | recf(y).e | udf | (q`, i)

TopExpr 3 e ::= v | letL x = s in e | \Le

Expr 3 s ::= v | v(v) | new` | v.a | v.a := v

Qualifier 3 q ::= ˜ | @
Loc 3 ` ::= l1 | l2 | . . .
Loc ⊇ L

Prop 3 a

Fig. 4. Expression syntax. Phrases marked in gray arise as intermediate steps during
evaluation or are inserted automatically by elaboration.

A value v is either a variable, a recursive function abstraction, udf (undefined,
a first order value), or a reference.3 We write λy.e for recf(y).e if f /∈ fv(e). A
reference value (q`, i) refers to the object at address (`, i) in the heap, where ` is
the abstract location (allocation point) of the object and i is an integer unique
among the objects created at `. Source programs do not contain references, they
arise only during execution.

A top-level expression e is either a value, a let expression, or a demotion. A
let sequentializes the computation and its annotation L denotes the allocation
effect of the header. Demotion \Le is discussed in §2.1. The effect annotation of
the let expression guides demotion during substitution (see §3.2).

An expression s is either a value, a function call, an object creation, a prop-
erty read, or a property write. The subexpressions of expressions are restricted
to values. The expression new` constructs a new object at location ` with no
defined properties. The expressions v.a for reading property a of object v and
v.a := v′ for defining or updating property a of object v to be v′ are standard.

3.2 Small-Step Operational Semantics

The semantics maintains objects in a heap, which is a mapping from heap ad-
dresses of the form Loc × Z to property maps (Fig. 5(a)). The heap consists of
two parts with disjoint domains, the singleton heap for recent objects and the
summary heap for the remaining objects. A singleton reference (@`, i) refers to
an object in the singleton heap, which contains at most one object for each lo-
cation `. The summary heap has no such restriction and its objects are referred
to by summary references (̃ `, i).

A configuration of the semantics is a triple K = (H,H0, e) with H the
summary heap, H0 the singleton heap, and e an expression. Fig. 5(a) contains
an inductive definition of the reduction relation −→ on configurations.

The demotion rule SDem applies to \Le and moves all L-objects from the
singleton heap to the summary heap. It relies on the demotion operation, which
is defined for values, heaps, heap pairs, and property maps.

Demotion for values v\L (Fig. 5(b)) only affects singleton references with
locations in L, which are converted to summary references. If L is omitted, then

3 Variables are included in the syntactic category of values to obtain a concise def-
inition of A-normal form syntax that is closed under reduction. All proofs assume
closed values and thus rule out the variable case.

8

H ∈ Heap = Loc× Z
fin−→ PropMap

H ∈ Heap× Heap
h ∈ PropMap = Prop

fin−→ Value
L ::= � | letL x = s in � | \L�

SDem H, \Le −→ H\L, e

SApp H, (recf(x).e)(v) −→ H, e{f Z⇒ recf(x).e}{x Z⇒ v}
SLet H, letL x = v in e −→ H, e{x Z⇒ v}
SNew H, H0, new

` −→ H, H0{(`, i) 7→ {}}, (@`, i)
if dom(H0) ∩ ({`} × Z) = ∅
and (`, i) /∈ dom(H)

SRd H, (q`, i).a −→ H,H(q`, i)$a

SWrt H, (q`, i).a := v −→ H{(q`, i)(a) 7→ v}, udf

SLet′
H, s −→ H′,L[v]

H, letL x = s in e′′ −→ H′,L[letL x = v in e′′]

(a) Instrumented small-step operational semantics.

x\L = x
(q`, i)\L =

(
(̃ `, i) if ` ∈ L

(q`, i) if ` /∈ L
(recf(x).e)\L = recf(x).e

udf\L = udf

(H, H0)
\L = (H ∪HL)\L, (H0\HL)\L

where HL = H0 ↓ {(l, i) | l ∈ L, i ∈ Z}

(b) Demotion.

(H, H0)(q`, i) :=

(
H(`, i) if q = ˜

H0(`, i) if q = @

(H, H0){(q`, i)(a) 7→ v} :=

(
H{(`, i)(a) 7→ v}, H0 if q = ˜

H, H0{(`, i)(a) 7→ v} if q = @

(c) Auxiliary definitions.

Fig. 5. Semantics.

L = Loc. Demotion for heaps and property maps is defined pointwise. Demotion
for a pair of heaps first moves all L-objects from the singleton heap H0 to the
summary heap and then applies heap demotion to both parts individually.

The rules SApp and SLet perform beta-value reduction, but with a non-
standard notion of substitution defined in Fig. 6. As explained in §2.1, singleton
references must not be substituted into the body of a lambda abstraction or a
let expression with a conflicting allocation in its header (indicated by the L-
annotation). The omitted cases just propagate the substitution to the subterms.

The rule SNew creates a new, empty `-object in the singleton heap. The rule
ensures that the address (`, i) is unused in both heaps and that the singleton
heap does not contain an `-object, yet.

9

(\Le){x Z⇒ v} = \L(e{x Z⇒ v\L})

(recf(z).e){x Z⇒ v} =

(
recf(z).e if x ∈ {z, f}
recf(z).(e{x Z⇒ v\}) if x /∈ {z, f}

(letL y = s in e){x Z⇒ v} =

(
letL y = s{x Z⇒ v} in e if x = y

letL y = s{x Z⇒ v} in (e{x Z⇒ v\L}) if x 6= y

Fig. 6. Substitution with demotion.

The rules SRd and SWrt read and write properties of objects. They make
use of auxiliary read and write operations defined for pairs of heaps in Fig. 5(c).

The context rule SLet′ works because the result of reducing s ∈ Expr always
has the form of some e ∈ TopExpr, which can be written in the form L[v].

3.3 Properties of the Dynamic Semantics

The reduction relation maintains a number of invariants which hold for all con-
figurations reachable from (∅, ∅, e) where e is a closed expression that does not
contain object references. The proofs may be found in our technical report [13].

Lemma 1. Let K be a configuration and i ∈ {1, 2, 3, 4, 5}.
If Pi(K) and K −→ K ′, then Pi(K ′).

1. P1(H,H0, e) ≡ fv(e) = ∅. The expression e is closed.
2. P2(H,H0, e) ≡ (∀`)|dom(H0) ∩ ({`} × Z) | ≤ 1. For each abstract location

there exists at most one object in the singleton heap.
3. P3(H,H0, e): For all expressions of the form recf(x).e0 that occur in the

configuration, the body e0 does not contain a singleton reference (@`, i).
4. P4(H,H0, e): if (@`, i) occurs in the configuration, then (`, i) ∈ dom(H0).

A singleton reference refers to an object in the singleton heap.
5. P5(H,H0, e) ≡ dom(H) ∩ dom(H0) = ∅. The domains of the summary heap

and the singleton heap are disjoint.

4 Static Semantics

The type language defined in Fig. 7(a) distinguishes object types, the top type,
the type udf, and function types. As explained in the informal part, an object
type obj(p) refers to a record type r via the reference p, which either points to
the summary heap (̃ L) or to the singleton heap (@`). A record type r describes
a finite map from properties a ∈ Prop to types. The productions for types t
have a co-inductive reading to encompass recursive types without introducing
an explicit µ-operator. They generate the set of regular trees where the leaves are
marked with obj(p), >, or udf and inner nodes with →. Having recursive types
does not imply that all proofs involving types require co-induction. Standard
rule induction is sufficient except where otherwise noted.

10

t ::= obj(p) | > | udf | (Σ, t)
L→ (Σ, t)

p ::= ˜L | @` with |L| ≥ 1
r ::= {} | r{a 7→ t}
Ω ::= ∅ | Ω(` : r)
Σ ::= ∅ | Σ(` : r)
Γ ::= ∅ | Γ (x : t)

(a) Type syntax.

t <: t t <:>
L ⊆ L′

obj(̃ L) <: obj(̃ L′)

t1 <: t′1 t′2 <: t2 L ⊆ L′

(Σ2, t2)
L→ (Σ1, t1) <: (Σ2, t

′
2)

L′
→ (Σ1, t

′
1)

(b) Subtyping.

Fig. 7. Type syntax and subtyping.

Ω, Γ `v v : t value typing
Ω, Σ, Γ `e e : t ⇒ L, Σ, Γ typing of expressions
Ω, Σ `t t C t flow from singleton to summary heap
Ω, Σ `r @l.a : t read property
Ω, Σ `w p.a := t ⇒ Σ′ write property
Σ, Γ `c L clean Σ and Γ from singleton L references

Fig. 8. Overview over relations

The function type (Σ2, t2)
L→ (Σ1, t1) describes the calling context with sin-

gleton environment Σ2 and the parameter with type t2. The returned singleton
environment Σ1 is to replace Σ2 at the call site and t1 is the result type. The
location set L on the arrow is the latent allocation effect of the function. On
entry to the function, the singleton heap must not contain any L-object.

Fig. 8 lists the important judgments of the static semantics. The definitions
are presented in Fig. 9-12 and explained in their respective section.

4.1 Subtyping

Fig. 7(b) defines the subtyping relation. Besides the rules dealing with reflexivity
and top, one summary object type is a subtype of another, if it encompasses fewer
locations. It is not possible to subsume a singleton object type to a summary
object type. Function types are covariant in the return type and in the effects,
but contravariant in the argument type. The singleton environments could be
treated contra- and covariant analogously to the argument and return types, but
are left invariant to keep the inference algorithm palatable.

Lemma 2. The subtyping relation <: is reflexive and transitive.

Proof. Co-induction on the structure of types.

4.2 Typing of Values

Fig. 9 contains the typing rules for values. They derive the judgment Ω,Γ `v

v : t which relates the summary heap environment Ω, the type environment
Γ , and a value with a type. The rules Undefined, Object, Variable, and

11

Undefined
Ω, Γ `v udf : udf

Object
Ω, Γ `v (q`, i) : obj(q`)

Variable
Ω, Γ `v x : Γ (x)

Subsumption
Ω, Γ `v v : t

t <: t′

Ω, Γ `v v : t′

Function
dom(Σ) ∩ L = ∅ L′ ∪ L′′ ⊆ L Γ ′ = Γ ↓ fv(recf(x).e)

L′ = Locs(Γ ′) Γ ′′ = (Γ ′)\L′
tf = (Σ, t)

L→ (Σ′, t′)
Ω, Σ, Γ ′′(f : tf)(x : t) `e e : t′ ⇒ L′′, Σ′, Γ ′′′

Ω, Γ `v recf(x).e : tf

Fig. 9. Typing rules for values.

Subsumption present no surprises. The rule Function is one of the main work
horses of the type system. It has to ensure that a singleton reference for location
` does not sneak past allocations of new `-references as illustrated in §2.2.

This problem has two facets, both of which are treated using effects [12]. First,
a variable may hold a value with a singleton object type obj(@`) when a function
is invoked which allocates a new object at ` (Fig. 3(c)). The solution is to equip
each function type with an allocation effect, the set L′′ of locations for which the
function may allocate a new object. Through the condition dom(Σ)∩L = ∅, the
function type insists that no L′′-object is passed into the function as a singleton.
(Recall that L′′ ⊆ L.)

Second, our non-standard substitution demotes singleton references before
transporting them into the body of a function. This demotion is conservative as
shown in Fig. 3(b) and it causes most of the complication in the typing rule, but
it seems that this complication is unavoidable.

I To see the problem addressed by non-standard substitution, consider an
operational semantics which substitutes singleton references into functions. The
example below shows the problems in trying to define a typing discipline for it:

\`let x = new` in

let f = λz.(x, z) in

\`let y = new` in

\`let w = f(y) in w

After line two, the type environment would contain x : obj(@`) and f : ([` 7→
{ }], obj(@`)) ∅→ ([` 7→ { }], obj(@`) × obj(@`)), which is consistent with the
substitution of a singleton reference for x in the body of f . However, after line
three these types have to change to x : obj(̃ `) and f : ([` 7→ { }], obj(@`)) ∅→
([` 7→ { }], obj(̃ `) × obj(@`)). While the change of x’s type is a straightfor-
ward application of demotion, the change of f ’s type is not: it contains three
occurrences of obj(@`), but only one of them must change to ˜̀ . J

Integrating demotion into the typing rule is done with effects, again. Let Γ ′

be the typing environment of the function restricted to its free variables. The
set L′ = Locs(Γ ′) (see Fig. 10(a)) collects the locations mentioned in the types
of the free variables of the function. It constructs the environment Γ ′′ = (Γ ′)\L′

for the function body by demoting all types with respect to L′, corresponding to

12

Locs(
L→) = ∅

Locs(>) = ∅
Locs(udf) = ∅
Locs(obj(̃ L)) = L
Locs(obj(@l)) = {l}
Locs(∅) = ∅
Locs(Γ (x : t)) = Locs(Γ) ∪ Locs(t)

(a) Locations.

obj(@l)\L =

(
obj(̃ {l}) if l ∈ L

obj(@l) if l /∈ L

obj(̃ L′)\L = obj(̃ L′)

(Σ, t)
L→ (Σ′, t′)\L = (Σ, t)

L→ (Σ′, t′)

>\L = > udf
\L = udf

∅\L = ∅ Γ (x : t)\L = Γ \L(x : t\L)

(b) Demotion of types and environments.

Fig. 10. Auxiliary functions.

the action of the substitution on references (Fig. 10(b)). It further adds L′ to the
effect of the function so that no L′-object is passed as a singleton to the function.
Finally, the rule constructs the latent L-effect on the function arrow from the
allocation effect L′′ of the function body and L′, the locations mentioned in the
types of the free variables of the function (as discussed in §2.2).

4.3 Typing of Expressions

Fig. 11 contains the typing rules for expressions, which were informally explained
in §2. They rely on some auxiliary judgments defined in Fig. 12. The Value rule
expresses that the evaluation of a value has no effect. Hence, the environments
pass through unchanged and the effect is empty.

The rule Let sequentializes computations. The effect L1 of the header be-
comes the annotation of the let, which is inferred by our analysis. The L-effects
of header and body are merged to obtain the effect of the whole expression. The
type and singleton environments are threaded through the header and through
the body. The condition Σ,Γ `c L1 determines the set of locations that must
not be passed precisely into the let header.

The Function Call rule is driven by the L-effect of the function type.
It requires that Γ and Σ do not contain singleton L-references (ensured by
Σ,Γ `c L). It matches the expected argument type with the type of v2 and
yields the return type t1.

The Demote rule types the demotion \L. It reflects the move of the L-
objects from the singleton heap to the summary heap using the flow relation
Ω,Σ `t t C t′ (defined in Fig. 12), where t is the original type and t′ is its
demoted counterpart. Furthermore, the typing rule demotes references in Σ and
Γ and ensures that Ω does not contain singleton L-references.4

The New rule types object creation. As objects are always created as sin-
gleton objects without predefined properties, the return type is obj(@`) and
the singleton heap environment registers the binding ` 7→ {}. The other precon-
ditions guarantee that no singleton `-reference exists when the new `-object is
created.
4 Ω may contain singleton references for locations which are never demoted.

13

Value
Ω, Γ `v v : t

Ω, Σ, Γ `e v : t ⇒ ∅, Σ, Γ

New
Σ, Γ `c {`} ` ∈ dom(Ω)

Ω, Σ, Γ `e new
` : obj(@`) ⇒ {`}, Σ(` : {}), Γ

Let
Σ, Γ `c L1

Ω, Σ, Γ `e s1 : t1 ⇒ L1, Σ1, Γ1 Ω, Σ1, Γ1(x : t1) `e e2 : t2 ⇒ L2, Σ2, Γ2(x : t′1)

Ω, Σ, Γ `e let
L1 x = s1 in e2 : t2 ⇒ L1 ∪ L2, Σ2, Γ2

Function Call
Σ, Γ `c L Ω, Γ `v v2 : t2

Ω, Γ `v v1 : (Σ, t2)
L→ (Σ′, t1)

Ω, Σ, Γ `e v1(v2) : t1 ⇒ L, Σ′, Γ

Demote
Ω, Σ′, Γ \L `e e : t ⇒ L′, Σ′′, Γ ′′

Σ′ = Σ\L ↑ L L ⊆ L′ Ω = Ω\L

∀l ∈ L : Ω, Σ `t obj(@l) C obj(̃ l)

Ω, Σ, Γ `e \Le : t ⇒ L′, Σ′′, Γ ′′

Read
Ω, Γ `v v : obj(p) Ω, Σ `r p.a : t

Ω, Σ, Γ `e v.a : t ⇒ ∅, Σ, Γ

Write
Ω, Γ `v v : obj(p) Ω, Γ `v v′ : t′

Ω, Σ `w p.a := t′ ⇒ Σ′

Ω, Σ, Γ `e v.a := v′ : udf⇒ ∅, Σ′, Γ

Fig. 11. Typing rules for expressions.

The Read rule relies on an auxiliary judgment (see Fig. 12) that performs a
lookup either in the summary environment or in the singleton one, depending on
the precision of the reference. The Write rule is similar. Its auxiliary judgment
returns a new singleton environment because it performs a strong update on
singleton object types. The return type is udf.

4.4 Auxiliary Judgments

Fig. 12 defines auxiliary judgments used in the typing rules. The first group
of rules defines the flow judgment Ω,Σ `t t C t′. The interesting part of the
flow relation is how it relates a singleton object type to a summary object type.
It does so by imposing a subtyping constraint between the property maps of
the two types. Thus, flow takes a snapshot of (part of) the current state of the
singleton environment and joins it into the summary heap environment.

Flow is invoked from the Demote rule to convert a reference from the sin-
gleton environment Σ to the summary environment Ω (from t to t′). The rule
for the object type is the most important one: If an `-reference changes from
singleton to summary, then the corresponding entries in Σ and Ω must be flow-
related. The rule for record types pushes the flow into the object’s properties,
and the remaining rules relate the property types by subtyping. For example, if
Σ(`)$a = udf, then Ω(`)$a can be either udf or >.

The second group of rules defines the read judgment Ω,Σ `r p.a : t, which
executes the abstract read operation of property a from reference p. The type of
a singleton or summary reference with a single location comes straight from the

14

t <: t′

Ω, Σ `t t C t′
l /∈ dom(Σ)

Ω, Σ `t obj(@l) C obj(̃ l)

(∀a ∈ Prop)
Ω, Σ `t Σ(l)(a) C Ω(l)(a)

Ω, Σ `t obj(@l) C obj(̃ l)

Σ(l)(a) = t

Ω, Σ `r @l.a : t

(∀l ∈ L) Ω(l)(a) <: t

Ω, Σ `r ˜L.a : t

(∀` ∈ L) t <: Ω(`)(a)

Ω, Σ `w ˜L.a := t ⇒ Σ

Σ′ = Σ[l, a 7→ t]

Ω, Σ `w @l.a := t ⇒ Σ′
Γ = Γ \L Σ = Σ\L dom(Σ) ∩ L = ∅

Σ, Γ `c L

Fig. 12. Rules for flow, reading, and writing to the heap.

respective environment. The type of a reference spread over locations in L is a
supertype of the types at each location.

The third group defines the write judgment Ω,Σ `w p.a := t ⇒ Σ′, which
performs a write operation to property a of reference p. The value to be stored
has type t, and the write returns a modified singleton environment Σ′ in case
p is a singleton reference. Writing to a summary reference (first rule) places
a subtyping constraint: the type in the summary environment must subsume
the type t of the written value. Writing to a singleton reference does not affect
the summary environment, but changes the respective location in the singleton
environment.

The last rule governs the interplay between allocation effects, the variable
environment, and the singleton environment. It states that the singleton envi-
ronment must not contain entries from the allocation effect L and that neither
environment contains precise L-references.

Modeling the read and write operations in auxiliary judgments enables us to
extend them modularly to support conditionals and prototypes (see our technical
report [13]).

5 Metatheory

This section presents the type soundness result for RAC. The basic structure of
the proof follows Felleisen and Wright [26], where type soundness follows from
a type preservation and a progress lemma. The progress lemma turns out to
be surprisingly hard to establish. Beyond mere typing, it requires a number of
invariants about program execution.

For preservation and progress, we extend the notion of typing to configura-
tions with closed expressions. Ω,Σ e H,H0, e : t ⇒ L,Σ′ ensures the consis-
tency between the dynamic heaps H,H0 and the static heap abstraction Ω,Σ in
addition to the type judgment Ω,Σ, ∅ `e e : t ⇒ L,Σ′, ∅. Consult the technical
report [13] for the full definitions.

Lemma 3 (Substitution). Suppose that Ω, ∅ `v v : tx and Ω,Σ, Γ (x : tx) `e

e : t0 ⇒ L,Σ′, Γ ′.

15

Then Ω,Σ, Γ `e e{x Z⇒ v} : t0 ⇒ L,Σ′, Γ ′.

Lemma 4 (Preservation). Suppose that H,H0, e −→ H ′,H ′
0, e

′ and Ω,Σ e

H,H0, e : t ⇒ L,Σ′. Then there exists some Σn and Ln ⊆ L with

Ω,Σn e H ′,H ′
0, e

′ : t ⇒ LnΣ′.

Lemma 5 (Progress). Suppose that Ω,Σ e H,H0, e : t ⇒ L,Σ′ and there
exists an expression e0, such that ∅, ∅, e0 −→∗ H,H0, e. Then either e is a value
or there exists H ′,H ′

0, e
′ such that H,H0, e −→ H ′,H ′

0, e
′.

6 Prototype Extension

It is fairly straightforward to extend RAC with a JavaScript-style prototype
mechanism. Fig. 13 defines the calculus RAC′ as an extension to syntax, oper-
ational semantics, and typing of RAC. RAC′ has an enhanced version of object
creation, new`(v). Its reduction rule SNew′ initializes a reserved prototype prop-
erty p of the new object to v. This property must not be used in user code.

The read reduction rule SRd′ replaces the SRd rule in Fig. 5. The read
operation first examines the value v obtained by reading the property directly
from the object itself. It returns v if v 6= udf. Otherwise, if a prototype is
defined for the object, it delegates the lookup to the prototype. If the property
is undefined or the prototype is not an object, the read operation returns udf.

The revised typing rule for new installs the prototype argument in the newly
created object. The prototype argument is an arbitrary value.

All other typing rules remain the same, but the auxiliary judgment to read a
property needs to be revised. It mimics the operational semantics in descending
the prototype chain of the object, returning the value when the property is found,
and recursively reading the prototype if one exists.

Writing of a property is not affected by prototypes because the write opera-
tion only affects the top-level object and ignores the prototype chain [8].

7 Implementation

Type inference for the type system is decidable. A non-deterministic algorithm
guesses for each demotion the set of abstract locations. This is possible for each
program, because it only contains a finite set of abstract locations. After this
guess typing becomes straightforward, because the demotions determine at each
program point if the program accesses the singleton heap or the summary heap.
As this algorithm is forbiddingly expensive, we designed a constraint-based im-
plementation.

Our prototype implementation consists of roughly 9000 lines of OCaml code.
It uses a syntax-directed version of the type system to generate constraints
(essentially equality, subtyping, flow, and map constraints, where the latter con-
strain the domain of a singleton environment). The solver for these constraints

16

Additional syntax e ::= · · · | new`(v)

Additional reductions

SNew′ H, H0, new
`(v) −→ H, H0[(`, j) 7→ { p 7→ v}], (@`, j)

if dom(H0) ∩ {`} × Z = ∅
and (`, j) /∈ dom(H)

SRd′ H, H0, (p, i).a −→ H, H0, read(H, H0, (p, i), a)

read(H, H0, (p, i), a) =

8><>:
v if v 6= udf

(q, i).a if v = udf ∧ pt = (q, i)

udf otherwise

where pt = (H, H0)(p, i)$ p

v = (H, H0)(p, i)$a

Changes in the static semantics

New’
Σ, Γ `c ` ` ∈ dom(Ω) Ω, Σ, Γ `v v : t

Ω, Σ, Γ `e new
`(v) : obj(@`) ⇒ {`}, Σ(` 7→ { p 7→ t}), Γ

t <: t′

(∀` ∈ L) Ω, Σ `r ˜̀ .a : t

Ω, Σ `r ˜L.a : t′

(Ω, Σ)(p)(a) = t 6= udf

Ω, Σ `r p.a : t

(Ω, Σ)(p)(a) = udf

(Ω, Σ)(p)(p) = obj(q) Ω, Σ `r q.a : t

Ω, Σ `r p.a : t

(Ω, Σ)(p)(a) = udf (Ω, Σ)(p)(p) 6= obj(p′)

Ω, Σ `r p.a : udf

Fig. 13. Extension to support prototypes.

builds a hyper-graph where variables (e.g., type variables α, location set variables
µ) are vertices and constraints are hyperedges.

The implementation of the inference algorithm is available on the web at
http://proglang.informatik.uni-freiburg.de/JavaScript/. The implemen-
tation infers the types and locations for all examples in the paper.

Figure 14 introduces variables and constraints. Type variables (α) are mapped
to types by type inference. During inference we map them to two types (indi-
cated by [7→ t, t]). The first type is a lower bound, the second one is an upper
bound (with respect to the subtyping relation). Location variables (µ) and preci-
sion variables (χ) are mapped to suitable values during constraint simplification.
Object variables (ω) are assigned to maps from properties to type variables. The
singleton environment variables (σ) are assigned to maps from abstract locations
to object type variables. The need of the upper and lower bound for variables is
explained in the section on constraint simplification 7.3.

The semantics of the constraints is given with respect to the relations defined
for the logical type system. See the technical report [13] for details.

17

α [7→ t, t] type variable
µ [7→ L, L] location variable
χ [7→ q, q] precision variable

ω [7→ Prop
fin−→ α] object variable

σ [7→ Loc
fin−→ ω] local environment variable

τ ::= t | α extended types
S ∈ {∈, /∈} basic set operations
Y ∈ {τ, µ, χ, ω, σ} wild-card
C constraints

τ <: τ σ ` τ C τ subtype, flow
l S µ µ ⊆ µ µ ∩ µ = ∅ sets

σ =#
µ σ α =#

µ α ω =#
µ ω demotion

σ `r α.a : α σ `w α.a := α ⇒ σ property access
σ = σ[` 7→ {}] µ = Locs(τ) references
Y = Y C ∧ C False

Fig. 14. Constraint Syntax

7.1 Preprocessing

A preprocessing step inserts demotions. It wraps a demotion \L around every
let expression the right hand side of which is either a function call or a new
expression. The L-annotation of the let is either a location variable µ (in case of
the function call), or the singleton set L = {l}, where l is the annotation of the
new expression. The content of the location variable µ is inferred during type
inference. The preprocessing step is required. Type inference cannot complete
successfully without it.

7.2 Constraint Generation

Figure 15 and Figure 16 contain the most important constraint generation rules.
In the inference system the summary heap environment Ω is a map from abstract
locations to type variables. The type environment Γ maps variables to type vari-
ables as usual. The domain of the type environment is known statically due to
static scoping of our core language. Hence a constraint like

∧
x∈dom(Γ) cx gener-

ates one constraint for each variable x in the domain of the type environment.
There is no need to add a special constraint for this purpose.

The judgment Ω,Γ, C `v v : α generates the constraint C for the value v.
Only the rule for functions (Function) is presented because the other ones are
trivial. The rule creates a new variable for the singleton environment (σ2) in
which the function should be typed, restricts Γ to the set of free variables in
the function, demotes them, and ensures that all effects of the function body are
collected and attached to the function type.

The notation Ci stands for the conjunction of all constraints mentioned in
the precondition of the judgment. (For the Function rule Ci = C1 ∧ . . . ∧ C7.)

18

Function
α0, α2, µ, µ′, σ2 fresh Γ ′ = Γ ↓ fv(λx.e)

C1 = µs ∩ µ = ∅ C3 = µ′′ ⊆ µ C4 =
^

x∈dom(Γ ′)
Locs(Γ ′(x)) ⊆ µ′

µs = dom(σ2) C5 =
^

x∈dom(Γ ′)
Γ ′′(x) =#

µ′ Γ ′(x)

C2 = µ′ ⊆ µ C6 =
^

x∈dom(Γ ′)
σ1, Γ

′(x) C Γ ′′(x)

Ω, Γ (x : α2), σ2, C7 `e e : α1 ⇒ µ′′, σ1, Γ
′′′

Ω, Γ, Ci `v λx.e : (σ2, α0 × α2)
µ→ (σ1, α1)

Fig. 15. Constraint Generation for Values

The judgment Ω,Γ, σ, C `e e : α ⇒ µ, σ, Γ generates constraints for ex-
pressions. Let’s start with a simple, but interesting case, the New rule. As in
the logical system, we need to ensure that the singleton environment does not
contain an object at the abstract location `. We generate C2 for this purpose
and ensure with C1 and C3 that there is no reference to an singleton `-object
in the environment σ or in free variables. The first condition is no constraint,
it is already ensured during constraint generation. The Read rule has to do a
recursive call and generates a read constraint. The Write rule is similar.

The Demote rule has to demote the type environment Γ and pass it to the
recursive call. Hence, the constraint generation algorithm creates a set of new
type variables together with a new type environment Γ ′, such that dom(Γ) =
dom(Γ ′). The constraint C2 ensures that the newly generated type variables are
equal to the demoted images of the original ones from Γ .

The Function Call rule guarantees that the singleton environments are
compatible with the environments in the function type and that the types of the
parameters match.

7.3 Constraint Simplification

Unfortunately, constraint simplification has to deal with negative information
like ` /∈ µ. Such a constraint is implicitly generated from σ′ = σ[` 7→ {}]5 in the
constaint generation for new, for example. For this reason a simple monotone
framework would not work. Hence we combine two monotone frameworks where
one is collecting positive information like ` ∈ µ and the other one is collecting
the negative information ` /∈ µ. The positive information raises the lower bounds
for location variables (and other variables) and the negative information lowers
their upper bounds. We obtain an initial upper bound for the location variables
by typing the program under a closed world assumption.

Following the constraint generation phase, all constraints are inserted into a
work list and subjected to simplicifation. Simplifying a constraint can cause one
or more of the following actions:

5 The map update requires ` /∈ dom(σ).

19

New
` ∈ dom(Ω) C1 = σ =#

` σ
C2 = σ′ = σ[` 7→ {}]

C3 =
^

x∈dom(Γ)
Γ (x) =#

` Γ (x)

Ω, Γ, σ, Ci `e new
` : obj(@`) ⇒ {l}, σ′, Γ

Read
α fresh

Ω, Γ, σ, C1 `v v1 : obj(ξµ1)
C2 = σ `r ξµ1.a : α

Ω, Γ, σ, Ci `e v.a : α ⇒ ∅, σ, Γ

Demote

µs = dom(σ′) C1 =
^

l∈µ′
σ, obj(@l) C obj(̃ l)

σ′ fresh C2 =
^

x∈dom(Γ)
Γ ′(x) =#

µ′ Γ (x) Ω, Γ ′, σ′, C3 `e e : α ⇒ µ, σ′′, Γ ′′

C4 = σ′ =#
µ′ σ C5 = µ′ ∩ µs = ∅ C6 = µ′ ⊆ µ

Ω, Γ, σ, Ci `e \µ′
e : α ⇒ µ, σ′′, Γ ′′

Function Call

α, α0, µ, σ1 fresh C1 =
^

x∈dom(Γ)
Γ (x) =#

µ Γ (x)

C2 = σ =#
µ σ C4 = µs ∩ µ = ∅ µs = dom(σ) Ω, Γ, σ, C5 `v v1 : α1

Ω, Γ, σ, C6 `v v2 : α2 C7 = udf <: α0 C8 = α1 = (σ, α0 × α2)
µ→ (σ1, α)

Ω, Γ, σ, Ci `e v1(v2) : α ⇒ µ, σ1, Γ

Fig. 16. Constraint Generation for Expressions

1. Create a new constraint,
2. Raise the lower bound of a variable,
3. Lower the upper bound of a variable,
4. Remove the constraint from the constraint set.

For space reasons, we only consider a few select simplification rules. The technical
report [13] contains all of them. Let’s have a look at the constraint simplification
rule for l ∈ µ:

l ∈ µ → delete, µ := µ ∪ {l}

Executing this rule raises the lower bound of µ (denoted by µ) by adding l.
Afterwards µ contains all the information that was expressed by the constraint,
so the constraint itself is deleted.

The operation ∪ for a location variable does some additional things. First, it
checks if l is not contained in the upper bound of µ, denoted l /∈ µ. If that is the
case, then the constraint l ∈ µ is not solvable because it contradicts the already
computed upper bound. Second, if the lower bound of µ changes (viz., if µ did
not contain l before the update), then every constraint which depends on µ is
added to the work list.

Another, more complicated example is the simplification of a read constraint.
Let’s assume we have

σ `r ξµ1.a : α

and that µ1 = {l1} and µ1 = {l1, l2, l3}, the precision variable ξ = @, σ(l1) = o1,
o1 = []. The constraint simplification finds that ξ is equal to @ and that implies

20

that only one location is allowed for µ1. Because the lower bound of µ1 contains
one element, simplification sets µ1 = {l1} and lowers the upper bound of µ1 to
µ1 = {l1}. After this change of the state of µ1 every constraint that depends on
µ1 is added to the work list. In particular, the read constraint is visited once
more.

The next visit notices that µ is equal to a location, and that the precision
variable is set. Hence, σ(l) contains information about the shape of the object.
Reading the property a of the object enforces that the object has a property that
is a subtype of α. Hence, simplification extends o1 = [a 7→ αa] and generates a
new constraint αa <: α. If one of these operations is not allowed, for example,
because the upper bound of o1 ensures that a /∈ dom(o1), a False constraint is
generated. Of course, the newly generated subtype constraint is added to the
work list, as well as each constraint that depends on o1.

Of course, the algorithm considers many other cases but space does not per-
mit to discuss them here. Experience with our prototype implementation indi-
cates that the combinination of two monotone frameworks enables the algorithm
to collect sufficient information to infer a valid typing.

Currently, the implementation is not optimized for speed. For example, it
propagates the structure of the most recent heap to every program point. A pos-
sibility to make the algorithm faster by reducing the amount of data computed
is to use lazy propagation like Foster and coworkers [10].

8 Related Work

The idea of using allocation points for abstracting heap structures and the per-
program-point approximation of the heap are due to Jones and Muchnick [16].

The notion of strong update is due to Chase and coworkers [6]. Their analysis
relies on complicated rules involving a per-program-point “storage shape graph”,
and no correctness argument is given. The present work reduces the storage
shape information to the (per-program-point) singleton environments, and it
comes with a correctness proof.

Our type system is related to must-alias analysis [1] and uniqueness typing [5].
Indeed, while the imprecise type obj(̃ L) expresses may-alias information, the
precise type obj(@`) expresses that all variables of this type refer to the same
object. The information conveyed is different from uniqueness, which guarantees
that some variable holds the only reference to a heap object. A commonality to
Altucher and Landi’s approach [1] is that their object names also refer exactly
to the most recently allocated object of a particular allocation point. Thus, we
can answer a question raised in previous work [14] affirmatively: the idea of their
approach can be extended to a higher-order language.

Balakrishnan and Reps [3] present an analysis called “Recency-Abstraction
for Heap-Allocated Storage”. Their goal is to obtain precise abstractions for
pointers to objects in executables. They exploit this information to optimize
dynamic dispatch in C++ binaries to static function calls where possible.

21

Smith, Walker, and Morrisett [22, 25] consider alias types as an extension of
linear types for typing low-level languages. Their calculus models object initial-
ization with type changing assignments to heap records. Alias types separate
pointers types from the actual store contents. A pointer has a singleton type
ptr(l), where l stands for a store location. They rely on existential quantifica-
tion to specify recursive data structures. Explicit pack and unpack operations are
needed for existentials and for recursive types. In contrast, our precise pointer
type obj(@`) is a singleton type standing for a location at a particular program
point. Our obj(̃ L) type has an existential-type flavor and it can model recursive
data structures where demotion corresponds to packing. Finally, the alias types
system is a prescriptive, explicitly typed calculus with decidable type checking
whereas our calculus is descriptive, implicitly typed, and has type inference.

Cqual [10] is a tool for specifying and inferring flow-sensitive type qualifiers
in C programs, which is related to typestate inferencee. Cqual first performs
a flow-insensitive type, alias, and effect analysis. In a second phase, it infers
linearities, which it uses to perform strong updates on assigned type qualifiers.
Cqual differs in a number of technical aspects from our work, one point being that
our store abstraction can always handle one reference per abstract store location
exactly (linearly in Cqual terminology) as well as many summary reference at
the same time whereas Cqual classifies a store location as either linear or non-
linear. Cqual’s use of polymorphism is similar to our notion of store splitting,
which is explained in our technical report.

Fähndrich and Xia’s delayed types [11] also provide a means of treating
object initialization. An object with a delayed type does not have to fulfill its
invariants, yet. The example in their paper is type checking not-null types. Our
calculus could be put to use for a similar analysis; at present, with delayed types
the programmer provides an explicit boundary when the invariants must hold,
whereas our calculus tracks exact information about an object as long as possible
and reverts to less precise summary information when unavoidable. We expect
that the recency attribute holds sufficiently long to cover the initialization phase,
but further investigation is required to confirm this expectation.

Kehrt and Aldrich [17] explore an imperative variant of Abadi and Cardelli’s
object calculus with delegation, linear object types, and linear methods. As
long as objects have a linear type, their method suite and delegatee can be
changed as typical in an initialization phase. Later on, the programmer can
drop linearity of an object at the price of making it immutable. Recency can
achieve similar objectives without requiring the object to be linear and without
making it immutable. The object loses its special status only when the next
object is allocated at the same abstract location.

Previous work involving the second author [14] defines the notion of single-
ness. Singleness is a property of a variable that implies must-alias information.
A variable x is single at expression e if all executions leading to e cause all bind-
ings for x to be identical. As this property is variable-oriented and not connected
to the notion of recent allocation, it is quite incomparable to the present work,
although the results could be used for similar purposes.

22

Might and Shivers [19] extend control flow analysis with abstract garbage
collection and abstract counting, the abstract counterpart of reference counting.
A superficial look suggests a relation to RAC, which cannot be substantiated:
An object with a precise reference type @` does not imply that the same object
would have an abstract count of one. Indeed, the current summary heap might
contain an arbitrary number of reachable imprecise references of type ˜̀ . RAC
does not support any notion of garbage collection. The computation of linearities
in the work of Foster and coworkers [10] has properties very similar to abstract
counting.

Anderson and coworkers [2] define a type system for JavaScript that comes
with a type inference algorithm. Their type system is based on an extension of
record types by a definedness indicator on each record component. The latter
distinguish whether a record component is definitively initialized or whether it
may be uninitialized. Compared to our work, they do not model type change
and they do not consider prototypes. Our implementation can type check all
examples in that work. We have not been able to get meaningful results from
their implementation, which precludes further comparison.

A similar idea is the basis for Qi and Myers’ masked types [21]. Their
typestate-based system tracks the initialization of objects in a Java core lan-
guage. It sidesteps the need for aliasing control by reverting to the monotonic
property “maybe initialized”. It requires sophisticated hand-annotated types for
dealing with cyclic data structures. Our system handles cyclic initialization with-
out annotation (as in Fig. 1(b)). It cannot elide (local) aliasing control because
general type change is not monotonic, but required for analyzing scripts.

In previous work, the second author has proposed a type system for JavaScript
[23]. The prime objective of that system was the study of a dynamic typing ap-
proach that enables to detect the “undesirable conversions” discussed in the
introduction with high precision. The present work is complementary in that
our previous work did not support flow-sensitive types.

Jensen and coworkers [15] have built a static analyzer for the entire JavaScript
language. This system is based on abstract interpretation and relies on recency,
context sensitivity, and some other techniques to obtain precise results. That
work is complementary because it is a practical implementation which is not
supported by formal proof. Moreover, it suffers from the restriction of all abstract
interpretation-based systems that it only affirms that a particular program does
not misbehave on a given set of inputs. Thus, unlike our present system, it cannot
compute a function type that describes the set of admissible inputs.

Some researchers treat scripting language typing from the prescriptive point
of view. A prominent example is the work on typed Scheme [24]. Their goal is to
enrich untyped languages gradually with type assertions and contracts and thus
transition over time to an explicitly typed language.

Bono and Fisher [4] consider an imperative object calculus with object exten-
sion and encapsulation. The goal of their calculus is to demonstrate that classes
and inheritance can be implemented in an object-based calculus if it provides
extension and encapsulation. Their calculus distinguishes prototypes (extensible

23

and overridable records without subtyping) from objects (read-only records with
subtyping). Overwriting of fields or methods with a different type is not possible.
They define a sound and complete typing algorithm. This work extends Fisher’s
thesis [9], which considers a functional calculus with similar features and with a
may-type mechanism, but which does not include a typing algorithm.

9 Conclusion

A type system that incorporates recency abstraction automatically identifies
an initialization phase at the beginning of the lifetime of an object. During
initialization, the object’s type is flow-sensitive and is amenable to precise type
change via strong update. The initialization phase ends when another object is
created at the same allocation point. Afterwards, the object’s type is a flow-
insensitive summary of the initialized state and all further updates.

These features make the recency-based type system well suited for analyzing
scripting languages. It gives satisfactory results on examples in the JavaScript
core language considered in this paper and it is amenable to accurately track
JavaScript’s prototype objects. While the analysis results are more conservative
than in an abstract interpretation-based approach, they are also more general
because the typing approach allows the stand-alone analysis of libraries.

Besides the full technical details and proofs, the accompanying technical re-
port [13] contains some worked out extensions to the theory, most notably the
treatment of conditionals, prototypes, and store splitting, which provides a no-
tion of polymorphism with respect to locations. We are currently extending the
implementation with context-sensitivity, which is straightforward to add, to im-
prove the analysis of factory methods. We are also interested in extending the
implementation with the goal to apply it to real-life JavaScript programs.

References

1. R. Z. Altucher and W. Landi. An extended form of must alias analysis for dynamic
allocation. In Proc. 1995 ACM Symp. POPL, pages 74–84, San Francisco, CA,
USA, Jan. 1995. ACM Press.

2. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for
JavaScript. In 19th ECOOP, volume 3586 of LNCS, Glasgow, Scotland, July 2005.
Springer.

3. G. Balakrishnan and T. W. Reps. Recency-abstraction for heap-allocated storage.
In K. Yi, editor, SAS, volume 4134 of LNCS, pages 221–239. Springer, 2006.

4. V. Bono and K. Fisher. An imperative, first-order calculus with object extension.
In E. Jul, editor, 12th ECOOP, volume 1445 of LNCS, pages 462–497, Brussels,
Belgium, July 1998. Springer.

5. J. Boyland, J. Noble, and W. Retert. Capabilities for sharing: A generalisation
of uniqueness and read-only. In ECOOP ’01: Proc. 15th European Conference on
Object-Oriented Programming, pages 2–27, London, UK, 2001. Springer-Verlag.

6. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and structures.
In Proc. PLDI ’90, pages 296–310, White Plains, NY, USA, June 1990. ACM.

24

7. D. Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008. 170 pages.
8. ECMAScript Language Specification. http://www.ecma-international.org/

publications/files/ECMA-ST/Ecma-262.pdf, Dec. 1999. ECMA International,
ECMA-262, 3rd edition.

9. K. Fisher. Type Systems for Object-Oriented Programming Languages. PhD thesis,
Standford University, 1996. Stanford CS Technical Report STAN-CS-TR-98-1602.

10. J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In PLDI 2002
[20], pages 1–12.

11. M. Fähndrich and S. Xia. Establishing object invariants with delayed types. In
Proc. 22nd ACM Conf. OOPSLA, pages 337–350, Montreal, QC, CA, 2007. ACM
Press, New York.

12. D. Gifford and J. Lucassen. Integrating functional and imperative programming. In
Proc. 1986 ACM Conf. on Lisp and Functional Programming, pages 28–38, 1986.

13. P. Heidegger and P. Thiemann. Recency types for scripting languages. Uni-
versität Freiburg, July, 2009. http://proglang.informatik.uni-freiburg.de/

JavaScript/appendix.pdf.
14. S. Jagannathan, P. Thiemann, S. Weeks, and A. Wright. Single and loving it:

Must-alias analysis for higher-order languages. In L. Cardelli, editor, Proc. 25th
ACM Symp. POPL, pages 329–341, San Diego, CA, USA, Jan. 1998. ACM Press.

15. S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In Proc.
16th International Static Analysis Symposium, SAS ’09, volume 5673 of LNCS.
Springer-Verlag, Aug. 2009.

16. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like
languages. In Proc. 6th ACM Symp. POPL, pages 244–256. ACM Press, 1979.

17. M. Kehrt and J. Aldrich. A theory of linear objects. In FOOL 2008, San Francisco,
CA, USA, Jan. 2008. http://fool08.kuis.kyoto-u.ac.jp/kehrt.pdf.

18. S. Lebresne, G. Richards, J. Östlund, T. Wrigstad, and J. Vitek. Understanding the
dynamics of JavaScript. In International Workshop on Script to Program Evolution
(STOP), Genova, Italy, July 2009.

19. M. Might and O. Shivers. Improving flow analyses via ΓCFA: Abstract garbage
collection and counting. In J. Lawall, editor, Proc. ICFP 2006, pages 13–25, Port-
land, Oregon, USA, Sept. 2006. ACM Press, New York.

20. Proc. 2002 PLDI, Berlin, Germany, June 2002. ACM Press.
21. X. Qi and A. C. Myers. Masked types for sound object initialization. In B. Pierce,

editor, Proc. 36th ACM Symp. POPL, pages 53–65, Savannah, GA, USA, Jan.
2009. ACM Press.

22. F. Smith, D. Walker, and J. G. Morrisett. Alias types. In G. Smolka, editor,
Proc. 9th ESOP, volume 1782 of LNCS, pages 366–381, Berlin, Germany, Mar.
2000. Springer.

23. P. Thiemann. Towards a type system for analyzing JavaScript programs. In
Proc. 14th ESOP, volume 3444 of LNCS, pages 408–422, Edinburgh, Scotland,
Apr. 2005. Springer.

24. S. Tobin-Hochstadt and M. Felleisen. The design and implementation of typed
scheme. In P. Wadler, editor, Proc. 35th ACM Symp. POPL, pages 395–406, San
Francisco, CA, USA, Jan. 2008. ACM Press.

25. D. Walker and G. Morrisett. Alias types for recursive data structures. In R. Harper,
editor, Proc. ACM Workshop Types in Compilation (TIC’00), volume 2071 of
LNCS, pages 177–206, Montréal, Canada, Sept. 2000. Springer.

26. A. Wright and M. Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

25

