
DOM Transactions for Testing JavaScript

Phillip Heidegger, Annette Bieniusa, and Peter Thiemann

Albert-Ludwigs-Universität Freiburg, Germany
{heidegger,bieniusa,thiemann}@informatik.uni-freiburg.de

Abstract. Unit testing in the presence of side e�ects requires the con-
struction of a suitable test �xture before each test run. We consider the
problem of providing test �xtures for unit testing of client-side JavaScript
code that manipulates its underlying web page. We propose using tech-
niques from software transactional memory to restore the test �xture
after each test run.

1 Introduction

Unit testing often requires the construction of a test �xture before running a test.
As a test run may change a �xture arbitrarily, unit testing frameworks like JUnit
(http://junit.org/) contain hooks for setting up and tearing down a �xture and
perform each test run on a fresh instance of the class under test, tacitly assuming
that the test run does not a�ect state outside the current instance.

Now consider unit testing for client-side JavaScript code using AJAX. AJAX
code runs in the context of an HTML document. It sends asynchronous requests
to a server and each response triggers a callback that dynamically modi�es the
HTML document. Thus, the �xture consists of the browser's internal DOM (doc-
ument object model [5]) representation of the HTML document, a sophisticated
network of objects with strong invariants. The code under test routinely modi�es
the DOM representation as well as other parts of the browser's state.

Setting up such a �xture involves running the browser to parse a slew of
HTML, construct its DOM representation, render it, and run initialization scripts
(e.g., onload handlers). JavaScript test frameworks either restart the browser
to reset the �xture or they only o�er testing on mock objects (e.g., Blue-Ridge
http://github.com/relevance/blue-ridge). Neither approach is desirable, because
mock objects do not o�er the full functionality of the real thing and a full browser
restart is too time consuming. Just consider the slowdown imposed on random
testing where there are hundreds of test runs each of which takes only a tiny
fraction of the time needed for a browser restart.

We propose to apply techniques from software transactional memory to the
problem of restoring a test �xture. The general idea is to set up the �xture �rst,
and then perform each test run in the body of a transaction, collect the results
of the test, and rollback the transaction to restore the �xture.

To evaluate the idea, we have built an implementation based on the technique
of transactional boosting [4]. To this end, our test suite intercepts calls to browser
methods as well as assignments that may modify state that is shared between



1 <html><head>...</head>
2 <body>
3 <table id="myTable">
4 <tr>
5 <th>Date/Time</th>
6 <th>From, Subject</th>
7 </tr>
8 </table>
9 <div id="status"></div>
10 </body>
11 </html>

1 function insertRow(log) {
2 var tr = document.getElementById('myTable')
3 .insertRow(1);
4 var td1 = tr.insertCell(0), td2 = tr.insertCell(1);
5 var d = new Date();
6 td1.appendChild(document.createTextNode(d));
7 td2.appendChild(document.createTextNode(log));
8 }
9 function adjustStatus(str) {
10 var div = document.getElementById('status');
11 while (div.childNodes.length > 0)
12 div.removeChild(div.childNodes[0]);
13 div.appendChild(document.createTextNode(str));
14 }

Fig. 1. HTML code of the �xture and insert row into table and adjust status.

1 while (runAnotherTest()) {
2 txn.init();
3 var data = tests.generateTestData();
4 var res = insertRow(data); // run transformed test case
5 tests.processResult(res); // check and store result
6 txn.rollback();
7 }

Fig. 2. Random testing of insertRow within transactions.

runs. For each modi�cation, a compensating action that reverses the e�ect of
the modi�cation is pushed on an undo stack. When a test run is �nished, the
compensating actions are executed in a LIFO manner such that their total e�ect
is to rollback the global state (including the DOM) to its original state.

2 Motivating Example

In the context of an AJAX project, consider the task of keeping up-to-date a table
of incoming emails and a status line that contains the number of unread emails
in the inbox (Fig. 1 left). To this end, the project contains some JavaScript
code that periodically contacts a server for the information and then asyn-
chronously updates the HTML document in a callback. The functions insertRow

and adjustStatus (Fig. 1 right) are invoked from the callback. The former extends
the table with a new line whereas the latter changes the status text.

Suppose we want to �nd bugs in the function insertRow using random testing
with the �xture described by Fig. 1 (left). For each test run, the testing frame-
work �rst has to generate a random string, then run the function against the
�xture, and afterwards use DOM functions to check if the expected change has
been performed on the document structure.

To use the same �xture for each test run, our test framework rewrites the code
of insertRow and adjustStatus by inserting code that registers actions for all side

2



e�ects. The resulting code for a test run needs to be wrapped in a transaction
as shown in Fig. 2. Before executing the test suite, starting the browser and
loading the program under test creates the �xture (the initial HTML page).
txn.init marks the start of a transaction. During the test run, the compensating
actions are transparently pushed on an undo stack. After the test run, txn.rollback
triggers the processing of the undo log that restores the initial state.

3 Implementing a transactional layer in JavaScript

To perform test runs in a transaction, it is necessary to rewrite the code under
test such that each operation with global side e�ects registers a compensating
action. Such side e�ects are assignments to global variables and properties of
globally reachable objects as well as calls to native DOM methods that modify
the DOM. Unfortunately, JavaScript's with statement prevents a static analysis
of the scope of a variable in general. Similarly, in many cases it is not possible
to statically decide which method is called. Thus, the rewriting implements the
following strategy:

� For each assignment, push a closure on the undo stack that assigns the old
value to the variable or object property.

� For a method call, the decision whether a user method or a native DOM
method is invoked is taken dynamically in a library method, which checks the
method's closure against the known DOM methods. For each DOM method,
the library provides a factory to create a compensating operation.1

For a user method, no compensation is needed because each side e�ect inside
of the user method creates its own entry in the undo stack.

Under a closed world assumption where no additional code is loaded at run
time or generated using eval, this transformation is safe in the sense that it does
not change the semantics of the code under test and that it faithfully registers
compensating actions for all relevant side e�ects.

We integrated the transformation in our tool JSConTest[3]2, a random test
generator for JavaScript based on contract annotations. To increase performance
of the test suite, the annotation ~noE�ects informs the transformation that the
function is free from side e�ects.

4 Related Work

Dhawan and co-authors [1] propose to augment the language and runtime of
JavaScript with transactions for monitoring security policies. In contrast, we
transform the code under test. Hence, the tool can be used in all browsers which
implement the current ECMA Script standard.

1 So far, we were able to provide compensating actions for all methods of the DOM
API that we came across.

2 http://proglang.informatik.uni-freiburg.de/jscontest/

3



Checkpointing [2] is a related technique that creates recovery points for long
running software to avoid restarting such applications from scratch. In browsers
which o�er the possibility to construct a checkpoint and revert to it, the rollback
of a �xture could be performed without administration of transactions. It has
also been used to construct debuggers that support backward evaluation [6].

There are also proposals for testing programs involving databases using trans-
actions. Again, the rationale is to avoid the cost of recreating an expensive �xture
between test runs.

5 Conclusion and Outlook

We have shown how transactions enable the construction of an e�ective JavaScript
testing framework that works in the original browser environment and avoids
the repeated reconstruction of test �xtures / HTML pages from scratch. This
approach simpli�es the setup of a AJAX testing environment enormously and
allows for testing under real-world conditions.. We have constructed a proof-of-
concept implementation as an extension of our tool JSConTest[3].

The implementation can be further improved in several ways. Due to their ir-
reversible nature, I/O operations like sending HTTP requests have to be treated
di�erently. For example, if a testing environment includes a server, this server
has to be reset for each run. Similarly, methods on the window object should be
redirected to a mock object to avoid human interactivity during the tests.

Compensating actions should be inverses of the original actions. This prop-
erty should be (mechanically) proved.

Program analysis can improve the performance of the rewritten code. In
ongoing work, we explore the partial inference of scope information so that local
and global variables can be distinguished outside of with statements.

References

1. M. Dhawan, C. Shan, and V. Ganapathy. The case for JavaScript transactions.
In PLAS'10: Proceedings of the ACM SIGPLAN Fifth Workshop on Programming

Languages and Analysis for Security, Toronto, Canada, June 2010. ACM Press, New
York, NY, USA.

2. E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375�408,
2002.

3. P. Heidegger and P. Thiemann. Contract-driven testing of JavaScript code. In
TOOLS, Malaga, Spain, June 2010. Springer. To appear.

4. M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-
concurrent transactional objects. In PPoPP '08: Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and practice of parallel programming, pages
207�216, New York, NY, USA, 2008. ACM.

5. P. Le Hégaret, R. Whitmer, and L. Wood. W3C document object model.
http://www.w3.org/DOM/, Aug. 2003.

6. A. Tolmach and A. W. Appel. A debugger for Standard ML. J. Funct. Program.,
5(2):155�200, 1995.

4


