JOURNAL OF OBJECT TECHNOLOGY

Published by AITO — Association Internationale pour les Technologies Objets, (© JOT 2011
Online at http://www. jot.fm.

JSConTest: Contract-Driven Testing
and Path Effect Inference for
JavaScript

Phillip Heidegger® Peter Thiemann®

a. University of Freiburg, Germany

Abstract Program understanding is a major obstacle during program
maintenance. In an object-oriented language, understanding an operation
requires understanding its type and its effect on the object network. The
effect is particularly important for scripting languages where there is neither
class structure that restricts the shape of an object nor any other kind of
access control.

We have designed and implemented JSConTest, a tool that provides
a facility to annotate JavaScript programs with type and effect contracts
and to create random tests out of the contracts. Run-time monitoring for
contracts is implemented with a program transformation. The effect of an
operation is described by access permissions, which abstract sets of access
paths along which the operation reads or writes object properties. Type
contracts can also be used to drive guided random testing of the program.

JSConTest contains an algorithm for computing access permissions
from a set of access paths obtained by running the program. The main
ingredient of the algorithm is a novel heuristic that produces precise and
concise results without user interaction. It has been applied to a range of
examples with encouraging results.

Keywords contracts, effects, scripting languages, access permissions, infer-
ence, JavaScript

1 Introduction

Software maintenance is a difficult task. During maintenance of a system, a programmer
is asked to implement new features and/or to track down errors and fix them. For
both activities, the programmer must understand the system sufficiently to come
up with the right way of changing the code and to guarantee that no new errors
are introduced by the changes. Our tool, JSConTest, contributes to both aspects of
software maintenance for programs written in JavaScript. However, the underlying
principles are transferable to other scripting languages like Python, PHP, and Ruby.

Phillip Heidegger, Peter Thiemann. JSConTest: Contract-Driven Testing and Path Effect Inference for
JavaScript. In Journal of Object Technology, vol. 11, no. 1, 2012, pages 6:1-29.
doi:10.5381/jot.2012.11.1.a6

http://www.jot.fm/copyright.html
http://www.jot.fm
http://dx.doi.org/10.5381/jot.2012.11.1.a6
http://dx.doi.org/10.5381/jot.2012.11.1.a6

2 . Phillip Heidegger, Peter Thiemann

Compared to traditional languages, scripting languages accelerate the development
process because of the flexibility gained by features like dynamic typing, weak typing,
and meta programming. However, this flexibility makes it hard to understand the
intended behavior of a system and to ensure that the system’s functionality is not
affected by a change.

Contracts with run-time monitoring [Mey97, FFF04, THF08| are a proven means
to establish hints that help with understanding a system and with detecting changed
behavior by adding specification elements to a programming language. For a scripting
language, even a contract that just specifies a typing can be helpful, as demonstrated
by the work on gradual typing [ST07] and with the construction of languages that
enable the interoperation and the gradual migration of functionality between statically
and dynamically typed parts of a program [WF09, MF09, BFNT09].

A common theme of these works is that the statically typed part of the code is
shielded from the dynamically typed parts by type or contract annotations. The
run-time monitoring of these annotations guarantees that the dynamically typed parts
cannot corrupt the statically typed parts of the program.

Systematic testing is the generally accepted pragmatic means to establish faith that
a system implements certain functionalities. There are many different kinds of testing
that we cannot explore at this point [MS04], two of which are relevant to JSConTest:
Unit testing is the main workhorse in agile development processes like test-driven
development. Regression testing is geared at detecting changes in functionality after a
change in the code base.

Our tool JSConTest [HT10a] is designed to help programmers maintain JavaScript
programs by supporting problem detection, program understanding, unit testing, and
regression testing.

e JSConTest provides a contract facility based on type signatures extended with
effect specifications. This facility aids program understanding because program-
mers can express their current understanding about the type and effect of an
operation and have it checked during test runs or program execution.

e Type contracts can be gradually introduced as the programmer explores the
program. Later on, they serve as checked documentation.

e The effect portion of a type contract confines the side effects of an operation
similar to a frame condition in program verification. This confinement simplifies
reasoning and helps understanding an operation.

e JSConTest can conduct test runs with directed random testing where test cases
generated from the type signatures and from hints extracted from the source code.
Elsewhere [HBT12] we have shown that this style of testing in combination with
effects is highly effective in detecting mutations that lead to changed behavior.
Hence, these test cases are very well suited as regression tests.

e The types in contracts can be narrowed down to singleton types, which effectively
turns the generated tests into unit tests.

e JSConTest comes with an algorithm that infers the effect of an operation from
traces collected at run time. The inferred effect provides a starting point to
investigate the meaning of an operation and to construct a contract that can be
employed for conducting regression tests.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 3

Why do we consider contracts with effects? The effects that we are proposing have
the form of access permissions, which define the set of paths along which an operation
is allowed to read and write object properties. Knowing the effect of an operation
simplifies understanding and reusing the operation. For example, an operation that
only explores paths matching the regular expression (r|l)*d can be safely applied to
any object structure that contains a binary tree linked via r and [and which stores
some data in its d properties. If we ascribe the operation a contract with these access
permissions, then we can be certain that all other properties are left alone and that
the tree is not restructured. JSConTest supports this style of contract and enforces it
dynamically.

The effect inference of JSConTest is not a static program analysis, but it is based
on data collected at run time. While this approach is incomplete, it can avoid some
problems with static analysis. As a general problem, a static analysis also analyzes
semantically dead code, which cannot be visited by a run-time approach. Regarding
JavaScript-specific problems, a run-time approach can easily support properties ac-
cessed dynamically via the array indexing notation, an eval function, scope-distorting
constructs like the with statement, and accesses via arbitrarily nested prototype chains,
all of which are very hard to analyze statically.

1.1 Contribution

We have designed and implemented JSConTest, a tool that augments JavaScript
with type contracts, access permission contracts, and contract monitoring. Beyond
contract monitoring, JSConTest performs guided random testing, where test cases
are automatically generated from the type contracts. To use contracts seamlessly
in a maintenance situation, we further designed and implemented an algorithm that
automatically computes a practically useful access permission for an operation from
the access traces of this operation generated during one or more program executions.

The main contribution of the algorithm is the generation of concise, non-trivial ac-
cess permission contracts, which we demonstrate with encouraging results on examples
ranging from small data structure libraries to large benchmark programs.

This paper contains an overview of the JSConTest system excerpted from earlier
work [HT10a]. Its main emphasis is the presentation of a significant overhaul of an
earlier effect inference algorithm [HT11]. The revised algorithm is simpler and gives
non-trivial, concise results without user intervention, whereas the previous algorithm
required fiddling with the configuration options.

1.2 Qutline

Section 2 contains a tour of JSConTest. It first motivates the design principles of
JSConTest, then explores the use of type signatures as contracts with examples, and
briefly explains its relation to testing. The section concludes with a brief description of
the implementation and a discussion of application scenarios for JSConTest. Section 3
provides some background on access paths and access permissions. Section 4 presents
the inference algorithm to compute access permissions from access traces and establishes
its soundness. Section 5 evaluates the inference algorithm with examples. Section 6
discusses related work and Section 7 concludes.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

4 . Phillip Heidegger, Peter Thiemann

Program 1 JavaScript - Predicate over an object.

> function readyToShip(order) {

s if (order.name && order.address && order.totalprice) {

. return (order.totalprice > 20 || order.shippingCharges > 0);
s}

s return false;

)

2 A Tour of JSConTest

JSConTest is a tool for understanding, documenting, and testing JavaScript programs.
It implements a contract system based on extended type signatures and an integrated
random testing engine.

In this context, we consider a type signature as a loose specification of an operation.
JSConTest regards a type signature as valid if it cannot find a counterexample in a given
number of test cases, which are randomly generated from the type signature. Although
this approach is incomplete, it nevertheless gathers evidence for the validity of the
signature. Furthermore, JSConTest does not reject a program based on programming
style (as some static systems propose [GSK10]). Second, it has a tight feedback loop,
because each failing test case provides a concrete counterexample. Third, it is gradually
applicable: Starting from a few operations with contracts, it is easy to add contracts
step by step thus gradually expanding the specified part of a program.

2.1 Type Signatures as Contracts

JSConTest’s contract language can express all types that are relevant to JavaScript
programs: booleans, strings, numbers, objects, and first class functions. As an example,
consider the function readyToShip (Program 1), which returns true if the object passed
as the first parameter represents a valid order in an online shop. Otherwise, it returns
false. To this end, it first checks the presence of the properties name, address, and
totalprice. Then it checks that shipping charges are applied unless the total price is
greater than 20.

With JSConTest, the programmer can specify the interface of an operation by
attaching a special comment. In the example, the comment specifies
that the function readyToShip takes an object as a parameter and returns a boolean
value. Such a contract is similar to a type signature, in a notation adapted from
functional programming languages like Haskell [Pey03] and ML [MTHMO97|.

The obj contract can be refined to specify a contract for each property. Such a
contract has the form { py : ¢1, ..., pn : ¢ } and describes an object with required
properties p; to p, where the property values have to fulfill the contracts ¢; to c,.
This style of contract admits further properties in the object, whereas the syntax
{| pi : ¢i |} disallows additional properties. So, the contract for readyToShip could be
refined to .

Although JavaScript arrays are just special objects, JSConTest supports a separate
array contract of the form [¢]. The array contract is homogeneous because all
elements of the array are expected to match ¢ (which may be top to accept any value).

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 5

Program 2 JavaScript - Contract for a function expression.

« var g = function (y) {
> return function(x) {
3 return x ===y,

4 };
5 };

JavaScript Primitives
x € identifier, f € float, i € integer, s € string, b € bool,
prop € property

Primitive contracts

p u= undf|T undefined, any value
| bool|d boolean values
| string]|s string values
| dint || [i54] integers, integer range
| number | f| [f; f] floats, float range
| obj|fun object, function
| js:zx custom contract, JS scope
Composite contracts
c = p
| cOnumbers | c@strings | c@labels guided random testing
| (c...,0) — c(ap)’ functions, ap see Figure 2
| cdle...,0) —c(ap)? methods, ap see Figure 2
| {pi:ci,p2ica,-epnica(s...)’} objects
| Adlpr:ei,peicay..ypnical} objects
| [l arrays
Annotations
a “noAsserts | "noTests | #Tests:{
Contracts
t u= /*c ca* (| ca*)* */

Figure 1 — Syntax of contracts.

Contracts may also be attached to inline function expressions. Program 2 contains
an example.

Figure 1 presents the syntax of JSConTest’s contract language. Beyond the
contracts already discussed, there are singleton contracts for primitive data types —
they only accept one particular value. There is also support for numeric ranges. Last,
but not least, the contract system is user-extensible. A contract of the form js:z invokes
a custom extension written by the programmer, where x is the name of a JavaScript
function that is called by JSConTest to implement the user-defined contract. More
than one contract per function can be specified by writing a list of contracts separated
by the “|” character. For functions, the effect of such a specification is similar to an
intersection type. For more details, refer to our previous work [HT10a].

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

6 - Phillip Heidegger, Peter Thiemann

Program 3 JavaScript - Contract for a predicate on two integers.

> function f(x,y) {
s return (x =y && 2 x x == x + 10) ? "true" : false;

3}

2.2 Contracts as Test Case Generators

JSConTest uses contracts in two different ways, for implementing contract monitoring
and for generating random test cases. The latter is a natural extension of the former.
For contract monitoring, each contract must provide a checker that asserts that a
value adheres to the contract. For testing, each contract must provide a generator
that produces random values that all fulfill the contract.

For primitive contracts, checkers and generators are straightforward. Generators
produce uniformly distributed samples of the domain of the contract. For function
contracts, checkers and generators for functions are needed. They can be defined in
terms of the checkers and generators of the argument and result contracts:

Implementing (A — B).check requires A.generate and B.check
Implementing (A — B).generate requires A.check and B.generate

In particular, the generator for (A — B) produces a function that first invokes A.check
on its argument x and signals failure if the check fails. Then it uses B.generate
(potentially exploiting dependencies as already explained) to create an output value
y for the function. Depending on the programmer’s choice between pure or impure
functions, this value can be memoized.

2.3 Guided Random Testing

Often it is useful to modify the random generator of a contract depending on the
situation in which it is used. Consider the function f in Program 3. For some input
constellations, the function returns a string instead of the expected boolean. It is
unlikely that testing f with random integers discovers the contract violation, because
the probability to return "true" is extremely small (= 2732) if the inputs are generated
with a uniformly distributed random generator for x and y. To this end, JSConTest
supports guided random testing.

The guided random generator is triggered by the annotation @numbers in the
contract of Program 4. Its use increases the probability of finding a counterexample for
f’s contract to p ~ %. It relies on a simple static analysis which collects the number
literals in the body of the function. Based on these numbers, JSConTest generates
integer values either by using the random generator or by generating an expression
tree (both cases with a probability of 0.5). The nodes in the expression trees are
picked randomly and correspond to the basic arithmetic operations (4, —, *, /). The
leaves are picked from the set {0,1} and the collected numbers (in this case, from
{0,1,2,10}) or from randomly generated integers (each case with a probability of 0.5).
The algorithm chooses randomly between generating either a node or a leaf.

Program 5 contains the algorithm used to generate expression trees. To ensure
termination of the algorithm, the probability to generate a node (the parameter p) is

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 7

Program 4 JavaScript - Contract for a predicate of two integers (annotated).

> function f(x,y) {
s return (x 1=y && 2 x x == x + 10) ? "true" : false;

<}

Program 5 Random Generator for Trees.

function RINT(constl) > constl is a list of functions to create constants
return GENTREE(constl, [+, —, *, \])
function GENTREE(ll,nl, p = 0.5) > default value of p is 0.5

> [l and nl are lists of functions which create leaves and notes
if RANDOM() < p then
GENNODE < PICK(nl) > randomly picks a node generator
arity < GENNODE.arity
params <« [1..arity]. MAP(Xi. GENTREE(ll,nl, p x 0.9))

return GENNODE(params[l],. .., params|arity))
else
return pICK(Il)() > randomly picks a leaf generator and executes it

reduced for each recursive call.! For the depth i the probability to generate a node is
p(node,i + 1) = 0.5 % 0.9".

JSConTest generates random objects using an algorithm similar to GENTREE.
Hence, in the default configuration JSConTest only generates tree structures for
contracts. But it is easy to enable the algorithm to generate acyclic object graphs
by including a function PICKOBJECT, say, that randomly picks a previously created
object in the list of leaf generators. To support this operation, each leaf and node
constructor is wrapped by a function that stores the created object in a global cache.
From this cache PICKOBJECT can make its pick.

The approach to generate numbers from random expression trees turns out to
work well even in complicated situations like in Program 6. This program contains a
contract violation which is guarded by a diophantine equation. The guided random
generator finds a solution to the equation in seconds.

The same approach works for generating strings and object labels. Attaching
@strings to a string contract collects the string constants in the function body and
makes them preferred outputs of the generator. The annotation @labels modifies the
random generator for objects by collecting all property names from the function body.
For example, finding the error in Program 7 with a uniformly distributed random
generator for objects is hopeless. The annotation raises the probability to generate an
object with properties p and quest, because these two properties are contained in the
function body of h. JSConTest typically finds this defect in less than 10 test cases.

In general, it might be argued that even a very simple static analysis would be
able to discover the problems in these example programs. However, a user of the
static analysis would have to further investigate the program to check if the problem
reported is a false positive. For example, it could be the case that the condition in

IThe actual implementation is a slightly more complicated because the probability passed to the
recursive call depends also on the arity of GENNoDE. We omit this technical detail here for simplicity.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

8 - Phillip Heidegger, Peter Thiemann

Program 6 JavaScript - Complicated conditions.

> function DiophantineEquation(x,y,z) {
s return ((x#345 == yx5+4) && (xx2—1 == z+9 — 1)) ? "true" : false;
<}

Program 7 JavaScript - Object access.

1

> function h(x) {
s return (x && x.p && x.quest) 7 "true" : false;

<}

Program 6 were not satisfiable so that the true-branch were dead code. In contrast, if
JSConTest reports a problem, then it includes the test case exhibiting the problem as
evidence.

2.4 Access Permission Contracts

Up to this point, we only discussed contracts specifying the functional behavior of
an operation. However, many JavaScript operations perform side effects, which are
not covered by a functional specification. To this end, JSConTest supports access
permission contracts to specify the side effects of an operation.

An access permission contract consists of a set of path expressions, which start
with variable name followed by a restricted regular expression over property names.
A path expression specifies which properties of the object bound to the variable are
readable or writeable. Figure 2 defines the syntax of access permission contracts.

As an example, consider an operation on binary trees. A node of the tree is
implemented by an object that contains properties left, right, and value, where left
and right contain objects representing the subtrees (or null) and value contains some
value associated with the tree node. A method that computes the height and the
balance? (Program 8) for all nodes of the tree may store information in a property
balance for later reuse. The method only writes to balance, while it reads left and right.
The contract with [this./left|right/«.balance] is a concise description of the side effect
of this method. The subpart /left|right/* expresses that an arbitrary sequence of left
and right properties may be traversed. An access permission grants write access to
all paths that completely match a path expression. It also grants read access to all
prefixes of a write path. Hence, reading the paths this, this.left, this.left.right, and so
on is granted by the access permission.

The typing part of the contract for heightAndBalance states that the function
accepts a tree and returns an integer. The tree contract js:tree is a user-defined
contract that generates trees using the algorithm shown in Program 5 parameterized
with suitable node and leaf constructors.

Program 9 contains an operation that cleans up a tree by deleting all temporary
values stored in it. The type signature states that the function accepts a tree but does

2The balance of a binary tree is the difference between the height of the left and the right child.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript

r € regular expressions

ap == with L except L access permissions

L == [P*]|js:x access paths

P = z.(Pr)*|r path expressions
Pr = prop|r|?|*|Pr«x properties, property sets

Figure 2 — Syntax of access permission contracts.

Program 8 JavaScript - Height and balance of a binary tree.

> function heightAndBalance() {

s var Ih = this.left ? heightAndBalance.call(this.left) : 0;

« var rh = this.right ? heightAndBalance.call(this.right) : 0;
s this.balance = |h — rh;

s return max(lh, rh) + 1;

T}

Program 9 JavaScript - Clean a binary tree.

> function cleanUp() {
s for (var property in this) {
" if (property in {left: 0, right: 0}) {

s cleanUp.call(this[property]);
6 } else if (property == "value’) {
7 delete this[property];

o}
o}
10 }

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

10 - Phillip Heidegger, Peter Thiemann

not return any value, expressed by the type contract undf. Its access permission grants
write access to all properties in the tree except left, right, and value. It is constructed
from two parts. The first part grants write access to all properties in the tree, while
the second part forbids writing to the properties left, right and value. The question
mark behind the property name value makes it optional. The operation may delete all
of the intermediate values stored in the tree, but it can neither change the structure
of the tree nor the value of the nodes. The modifier +— at the end of the contract
indicates that only the write permission should be restricted (see Section 3).

2.5 Working with JSConTest

JSConTest is designed to help programmers during the implementation, testing, and
maintenance phases. We sketch two likely application scenarios and give an impression
of working with the system in practice.

2.5.1 Test-Driven Development

In test-driven development the programmer writes test cases for an operation in
lieu of a specification before starting to code it. Then, the body of the operation is
constructed while trying to make the test cases succeed. Further test cases are added
and the program is reworked and refactored until the functionality is complete.

Using JSConTest, the programmer would write a type contract to fix the interface
of the operation before constructing the test cases. Then, test-driven development
proceeds as usual. An an additional benefit, JSConTest can perform random testing
of the type contract along with the tests that check the implemented functionality.
Hence, test cases that just perform sanity checks can safely be omitted from the test
suite.

Ideally, the programmer prescriptively constructs contracts with access permissions
from the start. They can be used to enforce visibility restrictions like Java’s private
and protected in the context of a scripting language. If a test case requires extended
access permissions, then the change to the contract serves as documentation for this
fact. In any case, the programmer becomes aware of the failing access permission
contract, which plays the role of a regression test.

Alternatively, the programmer can ignore the access permissions initially and
employ our inference algorithm (see Section 4) to have them automatically computed
from the code during the test runs. While this approach is not as disciplined as the
prescriptive approach, it quickly provides meaningful documentation for an operation.
If the contract is regularly augmented with the inferred access permission, then it also
aids in regression testing.

2.5.2 Maintenance

This is the scenario already sketched in the introduction. In the best case, the
system in maintenance has already been developed using JSConTest. In this case, the
programmer can proceed as indicated in Subsubsection 2.5.1: for new functionality,
state a test case and work on the code, using the contracts and access permissions as
part of the regression test suite.

Access permissions are also helpful for tracking down software defects. As the
access permissions clearly state dependencies on the program state, the operations
that must be debugged or otherwise examined can be narrowed down more quickly.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 11

compile

linked annotated instr.

X X linked linked
-list.js

-list.js -list.js

annotate

- include

Test Report
R — effect jscontest
e) [—————- -inference . '
DM S — tnl -Js
. é generate) include

Figure 3 — Workflow.

After the defect has been narrowed down to a failing test case, then the permissions of
a suspicious operation can be restricted to test if it is indeed the cause of the defect.
If the system does not (or not fully) employ contracts, then they can be gradually
introduced to operations that are suspected to contribute to a defect. As before, the
already existing contracts aid during regression testing when changing the code.

2.5.3 JSConTest Workflow

Figure 3 illustrates the use of JSConTest. Initially, the unit under test is annotated
with contract specifications. After annotation, the resulting source file (Figure 3,
annotated linked—list.js) is passed to the JSConTest compiler. The compiler trans-
forms the program into an instrumented version (instr. linked—list.js) and links it into
a runnable HTML template that includes the rest of the JSConTest framework. Ex-
ecuting this template in a browser generates the test cases from the contracts and
produces a test report with concrete evidence in case of errors.

The resulting test report documents which of the contracts are fulfilled by the unit
under test. Depending on the parameters passed to the compiler, the instrumented
code may collect further run-time data, for instance, what properties are accessed
during test execution. There are also event hooks to include user-specific functionality.
For example, the effect inference algorithm (see Section 4) is implemented in JavaScript
as such a hook.

3 Access Paths

To develop the inference algorithm for access contracts and prove its soundness, we
formalize the notions of access paths and access permissions. An access path 7 is a
list of property names (Figure 4). An access path is classified as a read path or a
write path by writing R(7) or W(r). An access permission «a is either empty 0, a
path expression b, the union of two access permissions a + a, or the restriction of one

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

12 . Phillip Heidegger, Peter Thiemann

p € Prop property names

T = elpw access paths

v == R|W]|N,|N, access classifiers

Kk u= y(m) classified access paths
P C Prop sets of property names
b == e|Pb|P*b path expressions

a u= 0|bla+a|a—a access permissions

Figure 4 — Syntax of access paths and access permissions.

W) <e¢ R(e) <b N.(7) <e Ny (e) < 0.e N,(e) <e
y(r)<b peP y(m) <b y(m)y<P*b pepP
vy(p.m) < P.b y(m) < P*.b y(p.m) < P*.b
R(m) < aq N,.(7) 4 a9 W(r) < ay Ny (7) £ a2
R(7) < a1 — ag W(r) < a1 — as
K< a K < ag (VkeK) Kk <a
K <ai+ as K <ai+ as K<a

Figure 5 — Matching paths with access permissions.

access permission by another a — a. A path expression b is a list where each element
is either P or P*, where P is a set of properties.

If IT is a set of paths, we say that II is prefiz-closed, if w.p € Il implies 7w € II. A pair
(IL, II') of sets of paths is prefiz-accessible, if Vr.p € Il : w € II and 1II is prefix-closed.

For an access permission a, the judgment x < a holds if the classified access path
k matches the access permission a. The derivation of a judgment for a restriction may
introduce two further classifiers, N, and N,,. Figure 5 contains the inference rules for
k < a. Essentially, a single path step P in a permission is matched by a corresponding
property p € P in the path. An iterated path step P* is matched by a sequence
of properties from P in the path. The five axioms on top of Figure 5 implement
the different treatments of the four kinds of paths. A write path must be matched
exactly by the permission, a read path may match any prefix of the permission, and a
negative read path only requires that a path prefix is matched by the permission. The
latter choice is required for the implementation of the restriction operator a; — as,
where the second premise asks for N,.(7) 4 ag, that is, there should be no derivation
of N,.(7) < ag. To remove a write permission from an access permission without
influencing the corresponding read permission, N, (7) also matches the empty set.
This definition of the matching relation enforces prefix-accessibility for the read and
write languages.

The rules for restriction may be surprising because of the preconditions N,.(7) 4 as
and N, (7) A ag, respectively. For the read case, this choice guarantees prefix-
closedness: If a path restriction removes path 7, then it should also remove all paths

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 13

of the form m.7" because they are no longer reachable. The premise N,.(7) £ a ensures
exactly this implication. The condition R(w) 4 a, on the other hand, removes all
paths that match the access permission a, namely all prefixes of .

The restriction of write accesses is best explained with an example. The base case
for a negative write access permission contains two rules, N, (g) < £ and N, (¢) < (.e.
To motivate them, consider two example access permission a; = w.* —w.1 and as =
w.* —w.1.Q. The first access permission a; removes both, read and write access to the
path w.1, because it holds N, (w.1) < w.1 and N, (w.1) < w.1.

The second access permission as removes the permission to write to the path w.1,
but it allows reading from w.1, because it holds N,.(w.1) £ w.1.0 and N, (w.1) < w.1.0.

Define the read language of a contract a as L.(a) = {7 | R(7) < a} and its write
language Ly, (a) = {m | W(n) < a}.

Lemma 3.1. For each a, the read language L, (a) is prefiz-closed.

Proof. By induction on the definition of < using the inductive hypothesis
Vr, ' (R(m.n’) <a= R(w) < a) A(N.(n.7") £ a= N,(7) £ a). O

Lemma 3.2. For each a, the pair of languages (L, (a), L, (a)) is prefiz-accessible.
Proof. By induction as in the previous lemma. O

The formal access permissions of this section are an abstract representation for
the syntax discussed in Subsection 2.4. An access permission for a variable x has the
following general form:

with [x.wq,. .., x.w,] except [x.eq,.. ., x.emn] (1)
Translated to the formal syntax defined in Figure 2, this permission reads as follows:
a=(wi+...+wy)—e1—...—ep .

and thus the contract (1) grants access to x according to L, (a) and L,,(a).

4 |nference of Access Permissions

The inference algorithm has the task to generate concise and correct access permissions
from a set of classified access paths. These access paths are recorded during the
execution of a JavaScrip program, often during test runs. The main challenge is that
the inference problem has two trivially correct solutions.

Fact 4.1. Let K = {v;(m;) | i € I} be any finite set of classified access paths. Define
a mapping B from classified access paths to path expressions by setting B(W (7)) :=
and B(R(w)) := 7.Q. The following two access permissions are certain to match K :

o K <32 B(vi(m)).
o K < x.

What’s the problem with these two solutions? The sum of all classified paths is the
smallest solution. It describes the finite regular language which contains exactly the
access paths observed during the trial run. For many simple operations, this solution
is perfectly adequate. However, if the traced operation processes a recursive data

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

14 . Phillip Heidegger, Peter Thiemann

structure, then this solution is sound but too specific, because the operation under
test will be able to produce infinitely many more access paths, given different inputs.
On the other hand, the permission * is the largest solution and permits everything.
This permission does not convey much information about the program, either.

This dilemma is a restricted version of a well known problem in machine learning.
The task that we are looking at is learning a language from a finite set of positive
examples, which has been shown to have no solution in a wide class of languages
including the regular languages [Gol67, Ang80|. For that reason, we develop a heuristic
approach.

4.1 Algorithm

The basic idea of our algorithm is to restrict the solution space suitably. It only
considers access permissions of the form 7.P*.7’ where P C Prop and «’ may be
empty.3

Why is that a useful restriction? If a data structure has only finitely many paths,
like a fixed object tree, then all paths should be listed in the permission. If a data
structure has infinitely many paths, then there is usually a fixed header part that
has to be traversed. This header is followed by a regular structure, which is typically
traversed by a loop or recursion in the program, like the link pointers in a list or the
left /right pointers in a binary tree. At the end of a path, there may be a data object
with some fixed access pattern, again. This kind of arrangement is quite typical for
data structure libraries.

The algorithm infers the components of 7.P*.7" as follows. The initial component
7 is determined by computing a set of “interesting” prefixes from a set of paths II,
where 7 is a prefix of II if there exists some 7’ € II such that 7 is a prefix of ©’. The
“interesting” prefixes should be chosen such that they traverse the header part of the
data structure. Next, the algorithm computes a set of “interesting” suffixes in a similar
way. The algorithm bundles the properties which are left after identifying the two
interesting parts into the middle part P* of the access permission.

Our algorithm proceeds in three steps. The first step builds a trie representation
for a set of classified access paths. The next step extracts a set of interesting prefixes
and suffixes from the set of classified access paths. The final step simplifies the set of
contracts to remove some redundancies.

4.1.1 Building the Trie

A trie [Fre60] is a rooted, directed graph where each node is labeled with an integer
and each edge is labeled with a property name. The trie T'(II) represents a set of
access paths II as follows. The root node r is labeled with the number of paths |II|.
For each property p, let p\Il = {x | p.m € I} be the set of tails of paths that start
with p. If p\II is non-empty, then the trie for II includes T'(p\II) with an edge from r
to the root node of T'(p\II).

For example, the path set IT;;; = {1,h,h.d,h.n,h.n.d,h.n.n,h.n.n.d} is represented
by the trie in Figure 6. The trie can also be considered a finite automaton recognizing
the set I with final states indicated by the double circles in the figure.

3If 7’ is empty and P = (), then 7.P*.7’ reduces to .

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 15

Figure 6 — Example trie.

7 € IntPrefixes, (II) In’ i wqn’ €l

7| <n Vpar' : w.p.’ € I1 = Prop(r \ IT) # Prop(w.p\II)
7 € IntPrefixes, (IT) m.q € IntPrefixes,, (IT)
p € Prop(r) mell p € Prop(n)

p € Prop(p.7m)

p € Prop(II) p € Prop(q.7)

Figure 7 — Interesting prefixes.

4.1.2 Interesting Prefixes

What prefixes are interesting? Or, alternatively, which properties should end up
in the P part of the permission w.P*.7’'? We choose P to contain loop properties
which are read inside of a loop or recursive function to traverse the heap to arbitrary
depth. Loop properties are used multiple times in some paths and never in others.
Figure 7 formalizes this idea as the set of interesting prefixes IntPrefixes, (IT). It is
parameterized by n to indicate that all prefixes of length less than n are interesting
by default.

The intuition behind this inductive definition is to only extend an interesting prefix
if the traversal of each single property results in a change of the set of reachable
properties. Here, a property is reachable if it occurs in a set of paths (cf. p € Prop(II)).
Once a loop property is reached, the set of reachable properties remains stable. Asn =1
works nicely in practice, we define the shortcut IntPrefixes(II) := IntPrefixes; (II).

In our running example, a good access permission for the set of paths Il is
1,h.n*.d. Therefore, the set of interesting prefixes should contain 1 and h, but no
paths containing n. The definition of interesting prefixes yields the expected result:

IntPrefixes(Il};s) = {e,1,h} . (2)

By definition, the set IntPrefixes,, (II) is prefix-closed. For read paths, prefix-closedness
results in redundant information because read permissions are also closed under prefix.
Hence, we compute the prefix reduct by removing all paths that are proper prefixes of
other paths.

Reduct(Il) = {w € I | (Vp)7.p ¢ II}

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

16 - Phillip Heidegger, Peter Thiemann

Figure 8 — Reversed suffix trie.

For write paths, a more conservative reduction must be applied. Only those proper
prefixes can be removed that are not members of the underlying original set. Let II
be a set of prefixes of Ilj.

ReductW(IL, IIy) = Reduct(II) U (IT N Ip)

4.1.3 Interesting Suffixes

Having come up with candidates for the 7 component of an access permission 7.P*.7/,
we now need to compute the part P*.7’, for each such 7. First, we compute for each
interesting prefix its set of suffixes. As Reduct(IntPrefixes(Ilj;s)) = {1,h}, the sets of
suffixes in our running example are:

Ny = {e}
M\ = {¢,d,n,nd,nn,nnd}

For each of these sets, we consider the set of interesting suffixes, where “interesting”
is defined in the same way as for prefixes. Technically, we just reverse all path suffixes
and apply the interesting-prefixes algorithm. That is,

—
Suffixes(X) = IntPreﬁxeSQ(g)

where $ = {7 | 7 € £} and 7 is the reverse of a path . In this case, we choose | = 2
to ensure that all suffixes with a length of 1 are added to the set of interesting suffixes.
The intuition behind this choice is that the last few properties in a path access the
actual data and thus should be mentioned explicitly in the path expression. As an
example, consider a recursive function that traverses a binary search tree, following
pointers | and r. The actual data is stored in another property, say, v. In such a case,
the path expression {1, r}*.v expresses the access pattern better than {1, r,v}*.

Going back to the example, Figure 8 shows the trie containing the reversed suffixes
of h\IIjs:. From this trie, it is easy to see that the interesting suffixes of h\II;;s; are
{e,d,n}, whereas there is only one respective suffix of 1\IIj;;, namely e.

4.1.4 Extracting the Loop Properties

The final step of the algorithm considers for each pair of interesting prefix and
interesting suffix the remaining part in the middle. The right quotients of the suffix
language with respect to the interesting suffixes yield exactly this remaining part. The
right quotient IT/7 of a language with respect to a path 7 is defined dually to the left
quotient by

/7 ={r"| 7’7 e}

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 17

(WN\Iys)/e = {e} — 1
(bB\Iyst)/e = b\y — h.{n,d}*
(b\IIjst)/d = {e,n,nn} +— hn*d
(b\IIyst)/n = {e,n} — hn*n

Figure 9 — Loop properties

The middle language is described by the set P of properties that occur in it.

For the running example, Figure 9 contains a table with the four cases to consider. It
displays the computations in the left column and the resulting access permissions in the
right column. This result is not entirely satisfactory because it contains redundancies.
The path expression h.{n,d}* clearly subsumes h.n*.d and h.n*.n, but the latter two
permissions are more informative and thus preferable. Unfortunately, even together,
they do not cover the access path h, which is only covered by h.{n,d}*.

The source of the problem is that the set {e,d,n} is suffix-closed. For prefixes
we apply the prefix reduction, because the semantics of access paths is prefix-closed.
However, we cannot just apply suffix reduction as the example shows: If the suffix (in
this case €) is actually an element of the underlying set h\Iljs;, then dropping the
suffix would be incorrect.

The solution is to treat the suffixes which would be removed by suffix reduction but
which are elements of the underlying set specially and to drop the rest. The special
treatment is simple: we just declare their middle language to be {e}. With this treat-
ment (specified in function BUILDPERMISSIONS in Program 10), the case (h\IIj;s;) with
suffix € yields the access permission h. The function has to be called for each interesting
prefix with the corresponding suffix language (function PERMISSIONSFROMPATHSET).

The final result of this phase applied to the running example is the set of access
permissions {1,h,h.n*.d,h.n*.n}.

4.1.5 Simplifying Access Permissions

The result of the previous phase is not as concise as it could be. It may still generate
redundant access permissions. Consider the result of the example {1,h,h.n*.d,h.n*.n}.
As this set only contains read permissions, which are closed under prefix, it follows
that permission h is subsumed by h.n*.d and h.n*.n so that the result is equivalent to
(the simpler set) {1,h.n*.d,h.n*.n}.

To perform this kind of simplification, we first define a subsumption relation C on
path permissions.

g . SuBPPS SUBSZERO SuBPSPS
FUB]EP; FbCc Pty PCP FPbCY FbCl PCP
13 * * *
- FPLC PV FPLC PTU FP*bC PV

This relation is sound in the sense that it reflects the semantic subset relation on sets
of accepted access paths.

Lemma 4.2. If R(7) <b and - b C ¥, then R(m) < b'.

Proof. By induction over the sum of the length of the derivation of <, the length of
the derivation of C and the length of the path 7.
O

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

18 - Phillip Heidegger, Peter Thiemann

Program 10 Building access permissions.
function BUILDPERMISSIONS(7r,)

> 7 is a prefix, 3 is the corresponding suffix language

R+ 0 > result set of path expressions

Yo = Suffixes(X) > set of interesting suffixes of ¥

for all o0 € ¥y do

if o is proper suffix of an element of ¥ then
if 0 € ¥ then
R=RU{m.o}

else
let P = Prop(X/o) in
if P =0 then > middle language is empty
R=RU{m.c}
else
R=RU{r.P*.0}
return R

function PERMISSIONSFROMPATHSET(I1y, IT)
> I set of prefixes of II, sampled set of paths
R+ 0 > result set of path expressions
for all = € IIy do
R = R U BUILDPERMISSIONS (7, 7\II)

return R

Program 11 Simplification.

function SIMPLIFY(R, W) > sets of path permissions (Reading, Writing)
while (3b,0) be RA(W € RAb#AV VY € W)AFbC Y do
R+ R— {b}

return (R,W)

Given this relation, simplification removes all read path permissions that are
subsumed by other (read or write) path permissions as specified in Program 11. In
the example, h can be removed from the read path permissions because - h C h.n*.d.

This subsumption relation is very simple. It can be replaced by any other sound
subsumption relation if more precision is required. It is sufficient for all examples we
considered because the shape of the subsuming permissions is always similar.

4.1.6 Putting it Together

Program 12 summarizes the overall algorithm as it has been presented so far. In our
previous work [HT11] the inference algorithm has some parameters because it was
based on a definition of interesting prefixes and interesting suffixes that depends on an
integer value. The algorithm in this work yields satisfactory results without requiring
any kind of tuning parameters.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 19

Program 12 a

function MAIN(TI", TT*) > II" read paths, II* write paths
IIj < IntPrefixes(I1") > interesting prefixes of II"
ITy < IntPrefixes(II") > interesting prefixes of II*

R < PERMISSIONSFROMPATHSET(Reduct(IIf), II")

W < PERMISSIONSFROMPATHSET(ReductW (IIY), IT*)
(R, W) +SIMPLIFY (R, W)

return R.Q 4+ W

lgorithm]Overall inference |algorithm.

4.2 Soundness

To establish the soundness of the algorithm, we need to prove that each element
of the original path set is matched by the extracted access permission. The first
phase, building the trie, is trivially sound. The third simplification phase is sound by
lemma 4.2. It remains to consider the second phase. We only examine the case for
read paths with write paths handled similarly.

Suppose 7 € II, the initial set of access paths. As IIy = Reduct(IntPrefixes; 4(II))
is prefix-free, there are two possibilities. Either there is exactly one element 7 € Il
such that 7y is a prefix of 7, or there is at least one element 7’ € Iy such that 7 is a
prefix of «’.

o Case (F=1mg € I : g is prefix of 7):

In the first case, it remains to show that mg is extended to an access path that
matches m = mp.m1. Let Xg be the set of interesting suffixes of ¥ = mo\II. By
construction, m; € X. We need to show that there is an element ¢ € ¥y where
either m = o or m; < P*.0.

For a contradiction, suppose that neither is the case and let ¢ be the maximal
suffix of 71 in 3¢ (such o must exist). If o is a proper suffix of an element of ¥
and o € X, then 0 = 7y, a contradiction.

Otherwise the middle language is P = Prop(X/o). There are two cases:

— Case P = (): Tt holds that ¥/o = {e}*. Therefore, ¢ = 71, a contradiction.
— Case P # : Tt holds that /o # {e}. We conclude that m; < P*.0, a
contradiction.

Hence, all cases are matched.

e Case (I’ € I : 7 is prefix of «'): In this case, 7’ will be prefix of an access
path 7’.b with m < «’.b.

4.3 Special Cases

There are two special cases of property accesses that lead to trie nodes with an
extremely high branching degree. The first case is an object that is used as an
array. The symptom of this case is the presence of accesses to numeric properties.
Our implementation assumes that arrays contain homogeneous data and collapses all

4% /o = is not possible for X # 0.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

20 - Phillip Heidegger, Peter Thiemann

numeric property names to a single pseudo property name §. This collapsing already
happens when the trie is constructed from the access paths.

Similarly, an object might be used as a hash table. This use also leads to nodes
with high branching degrees, but it cannot be reliably detected at trie construction
time. Instead, the implementation makes a pre-pass over the trie that detects nodes
with a high number of successors, merges these subtries, and relabels the remaining
edge to the merged successor trie with a wildcard pseudo property name ?. The
threshold for the high branching degree is user-configurable and defaults to 20.

As the rest of the algorithm does not depend on the actual form of the property
names, the introduction of these pseudo property names is inconsequential.

5 Evaluation

To evaluate the inference algorithm, we applied it to a few examples and compared
the computed access permissions with manually constructed permissions.

The first example is a small third-party library (200 LOC) which implements a
singly-linked list data structure.® Its interface comprises one constructor for list nodes
and six methods to operate on the list: add, remove, find, indexOf, size, and toString.

The first step towards effect inference is to come up with contracts for each of the
functions. The result is a source file annotated as in this code snippet:

> function add(data) { ... }
+ function item(index) { ... }

s function remove(index) { ... }

The contract js:Il describes the receiver object. It refers to a user-provided JavaScript
function that generates and checks a certain kind of lists, top stands for any value,
and undf is the undefined value, which is returned when no return value is specified.

To run the effect inference, it is sufficient to add an empty effect specification to the
contract as in for the add function. This augmented
contract states that the function with this contract is not allowed to change anything
in the heap that already exists before the invocation of the function. Applying the
JSConTest compiler to these contracts results in instrumented code that monitors all
property accesses.

When the compiled code executes it records thousands of property accesses which
violate the empty effect annotation. From this raw data, our effect inference computes
concise access permissions using the algorithm in Section 4. For example, the computed
effect for add is

this. _head, this. _head.nextx, this. _length

which means that add only accesses objects via its this pointer, it reads and writes
the head and _length properties, and it reads and writes a next property that is
reachable via _head followed by a sequence of next properties as indicated by nextx.
All three path permissions are write permissions that implicitly permit reading all
prefixes of any path leading to a permitted write.

Shttps://github.com/nzakas/computer-science-in- javascript

Journal of Object Technology, vol. 11, no. 1, 2012

https://github.com/nzakas/computer-science-in-javascript
http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 21

The computed effect for remove is also interesting:
this. _head.nextx.data.@, this. head.nextx, this. length

The function remove deletes a value from the list. To this end, it compares this value
with all data properties reachable via head and a sequence of next properties, as
indicated with the first path expression. Its ending in @ indicates a read-only path.
Furthermore, remove changes next pointers and modifies the _length property of this.

Full details of this example are available on the project homepage of JSConTest.6
It presents the outcomes of four examples complete with the annotated source code,
the instrumented source code, and a web page to execute the example locally.

On the webpage, there is a similar example implementing binary search trees. For
these two examples, the algorithm infers a precise effect annotation.

As a larger example, which is also detailed on the webpage, we consider the
Richards benchmark from the Google V8 benchmark suite. After annotating its source
code with contracts as outlined above, the effect inference algorithm automatically
obtains informative results albeit less precise than the manually determined effects
that we used in our previous work [HT11]. This example uncovered a number of new
points for our inference algorithm, in particular, that a special treatment for arrays
and objects used as hash tables is required (see Subsubsection 2.5.3). This treatment
is also covered in a micro benchmark in the webpage.

The Deltablue benchmark from the Google V8 benchmark suite is our largest
example. We annotate the source code with contracts and let the inference algorithm
compute the access permissions. For example, the remove method of an ordered
collection in the Deltablue benchmark has the following contract:

+ OrderedCollection.prototype.remove = function(elm)

2

The occurrence of the f pseudo property reveals that the ordered collection is im-
plemented by an array elms. The access to its length property is read-only, because
the JavaScript engine automatically adjusts the length property of arrays when they
grow or shrink. Our implementation does not catch this internal write operation. An
implementation in the browser would catch it, but it is not clear if that would be
useful.

A manual inspection of the access permissions computed by our algorithm indicates
that the contracts are generally informative and precise descriptions of the functions’
side effects. For some of the functions, we had developed access permissions by hand
before the inference algorithm was available. To our surprise, the inferred access
permissions turn out to be better than the hand-written ones in some cases. The
reason is that the human annotator did not always distinguish between read-only and
read /write accesses and sometimes forgot to add the @ at the end of a path expression.
The annotator also disliked path expressions with long paths and shortened the path
by stuffing more into the loop properties than strictly necessary. The Deltablue
benchmark makes heavy use of arrays to store collections and it does not rely on
list of tree-like structure. So there is no recursive traversal and the loop properties
introduced by the human annotator introduce a lot of imprecision.

In our previous work [HT11], we used the same set of examples except the Deltablue
benchmark. The evaluation in that paper was based on the old inference algorithm

Shttp://proglang. informatik.uni-freiburg.de/jscontest/

Journal of Object Technology, vol. 11, no. 1, 2012

http://proglang.informatik.uni-freiburg.de/jscontest/
http://dx.doi.org/10.5381/jot.2012.11.1.a6

22 . Phillip Heidegger, Peter Thiemann

with interactive parameter tuning. The new algorithm computes essentially the same
access permissions like the old one, but without human intervention. We conclude
that the new definition of an interesting prefix in this work yields a much improved
heuristic for the inference of access permissions.

One key point observed in the case studies is that it is important for the inference
to run with tight type contracts and/or a test suite with high coverage. Tightness
of the contract is required because a loose contract causes the generation of entirely
random test cases. It is unlikely that these random test cases completely explore the
access path pattern of a function. Similarly, high coverage increases the probability
that all access paths are exercised.

One way to circumvent these restrictions is to observe the program running in
the wild and collect and evaluate the resulting trace data. To be most effective and
efficient, this approach would require instrumenting a JavaScript engine to collect the
access traces. The evaluation back end and the inference algorithm would remain the
same.

6 Related Work

Purely manual testing per se does not guarantee any kind of coverage criterion and its
effectiveness depends highly on the experience of the tester and on the system of the
chosen approach to testing. Hence, manual testing should be backed up by further
kinds of testing. Random testing [BM83, Ham94] is one promising candidate, which
is surprisingly effective [FMO00], but which does not give guarantees with respect to
coverage [OH96, DN84|. However, there are a number of approaches and tools that
support random testing and that employ various means for improving coverage.

JCrasher [CS04] is a black-box random testing tool for the Java programming
language. It analyzes a set of classes with the goal to find a crashing program fragment
involving methods of these classes. It constructs fragments by applying methods with
random parameters to randomly constructed objects and then using these objects as
a basis for randomly generating further method calls. There is no further specification
of contract needed for JCrasher as the failure criterion is a program crash.

In contrast, JSConTest can test against user-specified contracts and can also do
run-time monitoring. JSConTest improves coverage by performing a limited amount
of white-box testing by collecting constants from the code to perform guided testing.

The QuickCheck library [CHOO] for Haskell, a purely functional programming
language, enables the statement of properties of program constructs, which are then
automatically tested. Test cases are randomly generated from the types of the variables
in properties. Additionally, programmers can specify their own generators. In contrast,
JSConTest derives its test cases from contracts, which can be more expressive than
types, and it is only geared to test contracts (although it could be extended to test
properties as well). JSConTest handles test case generation for imperative JavaScript
objects, which go beyond functions and primitive data. Another difference is that
QuickCheck performs pure black-box testing whereas JSConTest’s inclusion of program
analysis information places it on the brink to white-box testing.

DoubleCheck [Eas09] is an adaptation of QuickCheck to the ACL2 language imple-
mented in the PLT programming environment[FFFT97|7. Tt is used as a verification
aid to generate counterexamples for properties of programs that ACL2 cannot prove

7"The DrScheme teaching languages also provide QuickCheck-style testing of contracts.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 23

right away. The idea is to restate these properties guided by the counterexamples.
PLT-Redex also comes with a random testing facility that has detected errors in
semantics specifications [KF09].

RUTE-J [AHLLO6] is a framework that enables writing unit tests for Java that
make use of some portion of randomness. It can randomize a list of method calls as
well as input data and it performs minimization of failing test cases.

Randoop [Pac09] is a tool for directed random testing of Java classes. It generates
test cases in a similar way as JCrasher, but additionally uses the test outcomes as
feedback to avoid creating useless or outright erroneous tests.

Similarly, the ARTOO system [CLOMOS8] performs adaptive random testing for
Eiffel. It adapts previous ideas from the ART approach [CKMT10] to an object-
oriented setting. Its underlying idea is that tests are more effective if they evenly
cover the parameter space of the method under test. Its execution requires a distance
metric on the input values.

A highly effective approach to randomized testing is the DART system [GKSO05].
It performs what has been coined concolic testing: it combines running concrete test
cases with symbolic execution of the underlying code. Guided by the outcome of
concrete test cases it generates symbolic predicates for the branches taken in the
computation. It employs theorem proving to systematically falsify these predicates and
thus attempts to cover all branch alternatives, which is often successful. JSConTest is
inspired by this system, but relies on a much more lightweight approach (collecting
constants), which requires a larger number of test cases, for increasing the coverage.

A different approach to generating test cases is bounded exhaustive testing, which
systematically enumerates all inputs below a certain size threshold. This approach
is implemented, for example, in the Smallcheck system for Haskell [RNLO§| and also
in the Korat system for Java [BKMO02]. The idea here is that counterexamples are
usually small and that the exhaustive tests give some guarantees, at least for finite
structures like functions over finite domains. This approach is complementary to the
random testing approach presently chosen by JSConTest.

There are a number of JavaScript testing frameworks, for example, JSUnit®,
JsTester?, FireUnit!®, JSCoverage'!, JSMock!?, and rhinounit'®. However, these
frameworks are in the tradition of unit testing frameworks like JUnit'4. Their focus is
on automating the execution of unit tests, but not on the creation of these tests. In
contrast, JSConTest only requires the manual construction of interface specifications.
Also, JSConTest is currently restricted to functional testing of the JavaScript code, it
does not test the interactive behavior (GUT testing), nor the interface to web services
via XmlHTTPRequest. These extensions are left to future work.

JSConTest is inspired by, but complementary to work on type analysis for JavaScript
[JMT09, HT10b, HT09]. The focus of these works is to determine the type safety
of JavaScript programs by static analysis (abstract interpretation and constraint-
based analysis, respectively). Neither work supports type specifications, nor test case
generation.

Static effect analysis in programming languages has some history already. Initial

Shttp://www.jsunit.net/

9http://jstester.sourceforge.net/
Ohttp://fireunit.org/
nttp://siliconforks.com/jscoverage/
2http://jsmock.sourceforge.net/
13http://code.google.com/p/rhinounit/
Mnttp://junit.org/

Journal of Object Technology, vol. 11, no. 1, 2012

http://www.jsunit.net/
http://jstester.sourceforge.net/
http://fireunit.org/
http://siliconforks.com/jscoverage/
http://jsmock.sourceforge.net/
http://code.google.com/p/rhinounit/
http://junit.org/
http://dx.doi.org/10.5381/jot.2012.11.1.a6

24 . Phillip Heidegger, Peter Thiemann

efforts by Gifford and Lucassen [GL86| perform a mere side-effect analysis which
captures allocation as well as reading from and writing to variables. Subsequent
work extends this approach to effects on memory regions which abstract sets of
heap-allocated objects [TJ94, TT97]. Such an effect describes reading, writing, and
allocation in terms of regions. An important goal in these works is automatic effect
inference [BT01], because regions and effects are deemed as analysis results in a phase
of a compiler.

Path related properties are investigated by Deutsch [Deu92| with the main goal
of analyzing aliasing. His framework is based on abstract interpretation and offers
unique abstract domains that provide very precise approximations of path properties.

In object-oriented languages, the focus of work on regions and effects is much more
on documentation and controlling the scope of effects than on uncovering optimization
opportunities. Greenhouse and Boyland [GB99] transpose effects to objects. One
particular point of their effect system is that it preserves data abstraction by not
mentioning the particular field names that are involved in an effect, but by instead
declaring effect regions that encompass groups of fields (even across classes) and by
being able to have abstract regions. In contract, our work is geared towards the
scripting language JavaScript, which provides no data abstraction facilities and where
the actual paths are important documentation of an operation that aids program
understanding.

Skalka [Ska05] also considers effects of object-oriented programs, but his effects
are traces of operations. He proves that all traces generated by a program are safe
with respect to some policy. Data access is not an issue in this work.

The learning algorithm in Sec. 4.1 abstracts a set of access paths to a set of access
permissions, which are modeled after file paths with wildcards. The more general
problem is learning a language from positive examples, which has been shown to be
impossible, as soon as a class of languages contains all of the finite languages and
at least one infinite language [Gol67, Ang80]. Clearly, the class of regular languages
qualifies. Better results can be achieved by restricting the view to “simple examples’
[Den01] or to more restricted kinds of languages [FOC9S|.

Transformation of JavaScript programs is a well-studied topic in work on enforcing
and analyzing security properties. For example, Maffeis and coworkers [MMT09]
achieve isolation properties between mashed-up scripts using filters, rewriting, and
wrapping. Chugh and coworkers [CMJL09| present (among others) a dynamic in-
formation flow analysis based on wholesale rewriting. Yu and coworkers [YCIS07]
perform rewriting guided by a security policy. BrowserShield [RDWT07] relies on
similar techniques to attain safety. As detailed elsewhere [HBT12], extensive rewriting
has a significant performance impact and gives rise to subtle semantic problems. These
problems are shared among all transformation-based tools.

)

7 Conclusion

JSConTest is a JavaScript tool for program maintenance and understanding. It enables
a programmer to gradually introduce partial type and effect specifications in a program.
Both specifications take the form of contracts that are monitored at run time. An
effect specification restricts the paths that may be accessed from the free variables in
scope.

JSConTest contains an effect inference algorithm that computes access permissions
from sample runs of the program. The resulting effect specifications are concise and

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.5381/jot.2012.11.1.a6

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 25

precise. They are as good as manually determined ones and sometimes better. Thus,
effect inference appears to be a useful tool to analyze JavaScript programs and enhance
their contracts with effect information.

The current JSConTest distribution is available for download along with all exam-
ples from this paper.'?

References

[AHLLOG]|

[Ang80]

[BENT09]

[BKMO02]

[BMS3]|

[BTO1]

[CHO0]

[CKMT10]

[CLOMOS]

James H. Andrews, Susmita Haldar, Yong Lei, and Felix Chun Hang
Li. Tool support for randomized unit testing. In Proceedings of the 1st
International Workshop on Random testing, RT ’06, pages 36-45. ACM,
2006. doi:10.1145/1145735.1145741.

Dana Angluin. Inductive inference of formal languages from positive
data. Information and Control, 45(2):117-135, 1980. doi:10.1016/
50019-9958(80)90285-5.

Bard Bloom, John Field, Nathaniel Nystrom, Johan Ostlund, Gregor
Richards, Rok Strnisa, Jan Vitek, and Tobias Wrigstad. Thorn: robust,
concurrent, extensible scripting on the jvm. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 117-136. ACM, 2009.
doi:10.1145/1640089.1640098.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’02, pages 123-133. ACM, 2002. doi:10.1145/566172.
566191.

D. L. Bird and C. U. Munoz. Automatic generation of random self-
checking test cases. IBM Systems Journal, 22:229-245, September 1983.
doi:10.1147/sj.223.0229.

Lars Birkedal and Mads Tofte. A constraint-based region inference
algorithm. Theoretical Computer Science, 58:299-392, 2001. doi:10.
1016/S0304-3975(00) 00025-6.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In Proceedings of the fifth ACM
SIGPLAN International Conference on Functional Programming, ICFP
00, pages 268-279. ACM, 2000. doi:10.1145/351240.351266.

Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse.
Adaptive random testing: The art of test case diversity. Journal of
Systems and Software, 83:60—66, January 2010. doi:10.1016/j. jss.
2009.02.022.

Tlinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo:
adaptive random testing for object-oriented software. In Proceedings of
the 30th International Conference on Software Engineering, ICSE 08,
pages 71-80. ACM, 2008. doi:10.1145/1368088.1368099.

5http://proglang. informatik.uni-freiburg.de/jscontest/

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1145/1145735.1145741
http://dx.doi.org/10.1016/S0019-9958(80)90285-5
http://dx.doi.org/10.1016/S0019-9958(80)90285-5
http://dx.doi.org/10.1145/1640089.1640098
http://dx.doi.org/10.1145/566172.566191
http://dx.doi.org/10.1145/566172.566191
http://dx.doi.org/10.1147/sj.223.0229
http://dx.doi.org/10.1016/S0304-3975(00)00025-6
http://dx.doi.org/10.1016/S0304-3975(00)00025-6
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1145/1368088.1368099
http://proglang.informatik.uni-freiburg.de/jscontest/
http://dx.doi.org/10.5381/jot.2012.11.1.a6

26 - Phillip Heidegger, Peter Thiemann

[CMJLOY|

[CS04]

[Den01]

[Deu92]

[DN84]

[Eas09]

[FFF+97|

[FFFO4]

[FMO0]

[FOC98]

[Fre60]

Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged
information flow for javascript. In Proceedings of the 2009 ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’09, pages 50-62. ACM, 2009. doi:10.1145/1542476.
1542483.

Christoph Csallner and Yannis Smaragdakis. JCrasher: an automatic
robustness tester for java. Journal of Software—Practice & FExperience,
34:1025-1050, September 2004. doi:10.1002/spe.602.

Francois Denis. Learning regular languages from simple positive exam-
ples. Journal of Machine Learning, 44:37—66, July 2001. doi:10.1023/A:
1010826628977.

Alain Deutsch. A storeless model of aliasing and its abstractions using fi-
nite representations of right-regular equivalence relations. In Proc. IEEE
International Conference on Computer Languages 1992, pages 2—13,
Oakland, CA, April 1992. IEEE.

J. Duran and S. Ntafos. An evaluation of random testing. Transactions
on Software Engineering, 10(4):438-444, 1984. doi:10.1109/TSE.1984.
5010257.

Carl Eastlund. Doublecheck your theorems. In Proceedings of the Eighth
International Workshop on the ACL2 Theorem Prover and its Appli-
cations, ACL2 09, pages 42-46. ACM, 2009. doi:10.1145/1637837.
1637844.

Robert B. Findler, Cormac Flanagan, Matthew Flatt, Shriram Krishna-
murthi, and Matthias Felleisen. Drscheme: A pedagogic programming en-
vironment for scheme. In Proceedings of the 9th International Symposium
on Programming Languages: Implementations, Logics, and Programs:
Including a Special Trach on Declarative Programming Languages in FEd-
ucation, PLILP ’97, pages 369-388, London, UK, 1997. Springer-Verlag.

Robert B. Findler, Matthew Flatt, and Matthias Felleisen. Semantic
casts: Contracts and structural subtyping in a nominal world. In Martin
Odersky, editor, Proceedings of the 2004 International Conference on
Object-Oriented Technology, ECOOP’04, pages 614-639. Springer Berlin
/ Heidelberg, 2004.

Justin E. Forrester and Barton P. Miller. An empirical study of the
robustness of windows nt applications using random testing. In Pro-
ceedings of the 4th Conference on USENIX Windows Systems Sym-
posium - Volume 4, pages 6—6. USENIX Association, 2000. URL:
http://dl.acm.org/citation.cfm?id=1267102.1267108.

Laura Firoiu, Tim Oates, and Paul R. Cohen. Learning deterministic
finite automaton with a recurrent neural network. In Proceedings of
the 4th International Colloguium on Grammatical Inference, pages 90—
101, London, UK, 1998. Springer-Verlag. URL: http://dl.acm.org/
citation.cfm?id=645517.655778.

Edward Fredkin. Trie memory. Communications of the ACM, 3:490-499,
September 1960. doi:10.1145/367390.367400.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1145/1542476.1542483
http://dx.doi.org/10.1145/1542476.1542483
http://dx.doi.org/10.1002/spe.602
http://dx.doi.org/10.1023/A:1010826628977
http://dx.doi.org/10.1023/A:1010826628977
http://dx.doi.org/10.1109/TSE.1984.5010257
http://dx.doi.org/10.1109/TSE.1984.5010257
http://dx.doi.org/10.1145/1637837.1637844
http://dx.doi.org/10.1145/1637837.1637844
http://dl.acm.org/citation.cfm?id=1267102.1267108
http://dl.acm.org/citation.cfm?id=645517.655778
http://dl.acm.org/citation.cfm?id=645517.655778
http://dx.doi.org/10.1145/367390.367400
http://dx.doi.org/10.5381/jot.2012.11.1.a6

[GBYY]

|GKS05]

[GLS6]

[Gol67]

[GSK10]

[Ham94]

[HBT12|

[HT09]

[HT10a)

[HT10b)

[HT11]

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 27

Aaron Greenhouse and John Boyland. An object-oriented effects system.
In Proceedings of the 13th European Conference on Object-Oriented
Programming, ECOOP ’99, pages 205—229, London, UK, 1999. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=646156.679836.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI '05, pages 213-223. ACM, 2005. doi:10.1145/1065010.1065036.

David K. Gifford and John M. Lucassen. Integrating functional and
imperative programming. In Proceedings of the 1986 ACM Conference on
LISP and Functional Programming, LFP ’86, pages 28-38. ACM, 1986.
doi:10.1145/319838.319848.

E. Mark Gold. Language identification in the limit. Information and
Control, 10(5):447-474, 1967. URL: http://www.isrl.uiuc.edu/~amag/
langev/paper/gold671limit.html.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence
of javascript. In Proceedings of the 24th Furopean Conference on Object-
oriented Programming, ECOOP’10, pages 126-150. Springer-Verlag,
2010. URL: http://dl.acm.org/citation.cfm?id=1883978.1883988.

Richard Hamlet. Random testing. In Encyclopedia of Software Engineer-
ing, pages 970-978. Wiley, 1994.

Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access
permission contracts for scripting languages. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 12, pages 111-122. ACM, 2012. doi:
10.1145/2103656.2103671.

Phillip Heidegger and Peter Thiemann. Recency types for dynamically-
typed object-based languages. In 2009 International Workshop on
Foundations of Object-Oriented Languages, FOOL’09, Savannah, Geor-
gia, USA, 2009. URL: http://wuw.cs.cmu.edu/ aldrich/FO0L09/
heidegger-abstract.html.

Phillip Heidegger and Peter Thiemann. Contract-driven testing of
javascript code. In Proceedings of the 48th International Conference
on Objects, Models, Components, Patterns, TOOLS’10, pages 154-172.
Springer-Verlag, 2010. URL: http://dl.acm.org/citation.cfm?id=
1894386 .1894395.

Phillip Heidegger and Peter Thiemann. Recency types for analyzing
scripting languages. In Proceedings of the 24th European Conference
on Object-oriented Programming, ECOOP’10, pages 200-224. Springer-
Verlag, 2010. URL: http://dl.acm.org/citation.cfm?id=1883978.
1883992.

Phillip Heidegger and Peter Thiemann. A heuristic approach for com-
puting effects. In Proceedings of the 49th International Conference

on Objects, Models, Components, Patterns, TOOLS’11, pages 147-162.
Springer-Verlag, 2011. URL: http://dl.acm.org/citation.cfm?id=

2025896.2025908.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dl.acm.org/citation.cfm?id=646156.679836
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/319838.319848
http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html
http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html
http://dl.acm.org/citation.cfm?id=1883978.1883988
http://dx.doi.org/10.1145/2103656.2103671
http://dx.doi.org/10.1145/2103656.2103671
http://www.cs.cmu.edu/~aldrich/FOOL09/heidegger-abstract.html
http://www.cs.cmu.edu/~aldrich/FOOL09/heidegger-abstract.html
http://dl.acm.org/citation.cfm?id=1894386.1894395
http://dl.acm.org/citation.cfm?id=1894386.1894395
http://dl.acm.org/citation.cfm?id=1883978.1883992
http://dl.acm.org/citation.cfm?id=1883978.1883992
http://dl.acm.org/citation.cfm?id=2025896.2025908
http://dl.acm.org/citation.cfm?id=2025896.2025908
http://dx.doi.org/10.5381/jot.2012.11.1.a6

28 - Phillip Heidegger, Peter Thiemann

[IMTO9]

[KFO09]

[Mey97]

[MF09)

[MMT09]

[MS04]
[MTHM97]

[OH96]

[Pac09]

[Pey03]

[RDW+07]

[RNLOS|

[Ska05]

[ST07]

Simon H. Jensen, Anders Mgller, and Peter Thiemann. Type analysis
for javascript. In Proceedings of the 16th International Symposium on
Static Analysis, SAS 09, pages 238-255. Springer-Verlag, 2009. doi:
10.1007/978-3-642-03237-0_17.

Casey Klein and Robert Bruce Findler. Randomized testing in PLT
Redex. In Workshop on Scheme and Functional Programming 2009,
Boston, MA, USA, 20009.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
2nd edition, 1997.

Jacob Matthews and Robert B. Findler. Operational semantics for multi-
language programs. ACM Transactions on Programming Languages and
Systems, 31:12:1-12:44, April 2009. doi:10.1145/1190215.1190220.

Sergio Maffeis, John C. Mitchell, and Ankur Taly. Isolating javascript
with filters, rewriting, and wrappers. In Proceedings of the 14th European
Symposium on Research in Computer Security, ESORICS’09, pages 505—
522. Springer-Verlag, 2009. URL: http://dl.acm.org/citation.cfm?
1d=1813084.1813126.

Glenford J. Myers and Corey Sandler. The Art of Software Testing. John
Wiley & Sons, 2004.

Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

A. Jefferson Offutt and J. Huffman Hayes. A semantic model of program
faults. In 1996 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 195-200, San Diego, CA, USA, January
1996. doi:10.1145/229000.226317.

Carlos Pacheco. Directed Random Testing. Ph.D., MIT Department of
Electrical Engineering and Computer Science, Cambridge, MA, USA,
June 2009.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and
Saher Esmeir. Browsershield: Vulnerability-driven filtering of dynamic
html. ACM Transactions on the Web, 1, September 2007. doi:10.1145/
1281480.1281481.

Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck
and lazy smallcheck: automatic exhaustive testing for small values. In
Proceedings of the first ACM SIGPLAN Symposium on Haskell, Haskell
08, pages 37-48. ACM, 2008. doi:10.1145/1411286.1411292.

Christian Skalka. Trace effects and object orientation. In Proceedings
of the 7th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, PPDP ’05, pages 139-150. ACM,
2005. doi:10.1145/1069774.1069787.

Jeremy Siek and Walid Taha. Gradual typing for objects. In Pro-
ceedings of the 21st European Conference on Object-Oriented Pro-
gramming, ECOOP’07, pages 2-27. Springer-Verlag, 2007. doi:
10.1007/978-3-540-73589-2_2.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/1190215.1190220
http://dl.acm.org/citation.cfm?id=1813084.1813126
http://dl.acm.org/citation.cfm?id=1813084.1813126
http://dx.doi.org/10.1145/229000.226317
http://dx.doi.org/10.1145/1281480.1281481
http://dx.doi.org/10.1145/1281480.1281481
http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/1069774.1069787
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.5381/jot.2012.11.1.a6

[THFO08]

[TJ94]

[TT97]

[WF09)

[YCIS07]

JSConTest: Contract-Driven Testing and Path Effect Inference for JavaScript - 29

Sam Tobin-Hochstadt and Matthias Felleisen. The design and imple-
mentation of typed scheme. In Proceedings of the 35th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’08, pages 395-406. ACM, 2008. doi:10.1145/1328438.
1328486.

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline.
Information and Computation, 111:245-296, June 1994. doi:10.1109/
LICS.1992.185530.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management.
Information and Computation, 132:109-176, February 1997. doi:10.
1145/543552.512563.

Philip Wadler and Robert B. Findler. Well-typed programs can’t be
blamed. In Proceedings of the 18th European Symposium on Program-
ming Languages and Systems: Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2009, ESOP ’09,
pages 1-16. Springer-Verlag, 2009. doi:10.1007/978-3-642-00590-9_
1.

Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. In Proceedings of the 34th
annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’07, pages 237-249. ACM, 2007. doi:
10.1145/1190216.1190252.

About the authors

Phillip Heidegger is a PhD student at the University of Freiburg since 2007.
http://www.informatik.uni-freiburg.de/~linkenhe/.

Peter Thiemann is a full professor at the University of Freiburg and head of the
programming languages research group since 1999.
http://www.informatik.uni-freiburg.de/ thiemann.

Journal of Object Technology, vol. 11, no. 1, 2012

http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1145/1328438.1328486
http://dx.doi.org/10.1109/LICS.1992.185530
http://dx.doi.org/10.1109/LICS.1992.185530
http://dx.doi.org/10.1145/543552.512563
http://dx.doi.org/10.1145/543552.512563
http://dx.doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1007/978-3-642-00590-9_1
http://dx.doi.org/10.1145/1190216.1190252
http://dx.doi.org/10.1145/1190216.1190252
http://www.informatik.uni-freiburg.de/~linkenhe/
http://www.informatik.uni-freiburg.de/~thiemann
http://dx.doi.org/10.5381/jot.2012.11.1.a6

	Introduction
	Contribution
	Outline

	A Tour of JSConTest
	Type Signatures as Contracts
	Contracts as Test Case Generators
	Guided Random Testing
	Access Permission Contracts
	Working with JSConTest
	Test-Driven Development
	Maintenance
	JSConTest Workflow

	Access Paths
	Inference of Access Permissions
	Algorithm
	Building the Trie
	Interesting Prefixes
	Interesting Suffixes
	Extracting the Loop Properties
	Simplifying Access Permissions
	Putting it Together

	Soundness
	Special Cases

	Evaluation
	Related Work
	Conclusion
	Bibliography
	About the authors

