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Abstract

Software development in JavaScript (JS), one of the most important programming
languages today, is a particular challenge because it is hard to obtain accurate
descriptions of the statics and dynamics of a program. Static and dynamic program
analysis can provide such descriptions, but some features of JS make it hard to
analyze programs, especially the with-statement and the dynamic execution of
source code with eval.
This dissertation presents two approaches to increasing the efficiency of soft-

ware development in JS. The first part presents a static type system that uses
flow-sensitivity to precisely analyze the initialization phase of objects and that
treats objects later on in their life cycle flow-insensitively to keep the type system
simple. The second part presents the tool JSConTest that is inspired by the Design
by Contract approach. JSConTest is based on monitoring and (guided) random
testing.
The static type system of the first part is capable of typing JS programs with

cyclic object initialization without falling back to use null pointers. It categorizes
objects based on constructors or allocation sites. Because of its flow-sensitivity
in the initialization phase of objects, the type system can reflect changes to the
shape of the objects precisely. The type system is proven sound by a progress and
preservation lemma. The proofs heavily depend on an invariant stating that in the
initialization phase, the type system can establish a one-to-one relation between the
object to initialize and its suitable abstraction. A type inference algorithm based
on constraint generation and constraint solving reduces the annotation burden
significantly.
The second part of this work presents the dynamic tool JSConTest. Following

the Design by Contract methodology, functions can be annotated by contracts.
JSConTest supports two different kinds of contracts, type contracts (TC) and
access permission contracts (APC). TC are similar to type signatures known from
statically typed languages (e.g. Java, ML, Haskell), but they are as expressive as
dependent types. APC are a new approach to specifying what side effects a function
is allowed to perform. A formalization of APC together with a discussion of its
design principles lay the foundation of an implementation of APC. An inference
algorithm for APC has been developed, too. The two parts of JSConTest, TC and
APC, are evaluated with cases studies that show how they increase the quality of
JS programs.
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Zusammenfassung

Softwareentwicklung in JavaScript (JS), eine der wichtigsten Programmiersprachen
unserer Zeit, ist eine besondere Herausforderung. Ein Grund hierfür ist, dass es
zahlreiche Merkmale von JS gibt, die das statische Analysieren von JS verhindern,
oder zumindest erschweren. Vor allem das with Statement und das dynamische
Ausführen von Quelltext mit eval bereiten Probleme.
Diese Dissertation stellt zwei Ansätze vor, die Produktivität der Softwareent-

wicklung in JS zu steigern. Der erste Ansatz besteht aus einem statischem Typsys-
tem, das wegen seiner Flusssensitivität Objekte in ihrer Initialisierungsphase präzi-
se analysieren kann. Durch die flussinsensitive Behandlung der Objekte nach ihrer
Initialisierung ist es möglich den Einfluss der Flusssensitivität zu beschränken und
damit das Typsystem einfach zu halten. Als zweiter Ansatz wird ein Tool mit dem
Namen JSConTest vorgestellt, welches durch das Konzept „Design by Contract”
inspiriert ist. Verträge („contracts”) in JSConTest werden durch Monitoring und
randomisiertes Testen geprüft.
Das statische Typsystem des ersten Teils ist in der Lage, JS Programme, die

zyklische Objektstrukturen initialisieren, zu typen, ohne dabei Null-Referenzen
einsetzen zu müssen. Das Typsystem kategorisiert Objekte, basierend auf dem
Konstruktor mit dem sie erzeugt wurden, oder anhand der Zeile in der die Objekte
erzeugt wurden. Wegen der Flusssensitivität während der Initialisierungsphase des
Objekts kann das Typsystem Änderungen in der Struktur des Objekts nachhalten.
Die Korrektheit („soundness”) des Typsystems wird mithilfe eines „Progress” und
„Preservation” Lemmas bewiesen. Die Beweise der Lemmata basieren auf einer In-
variante, welche aussagt, dass das Typsystem eine eins zu eins Relation zwischen
Typen und Objekten während deren Initialisierungsphase sicherstellen kann. Ein
Typinferenzalgorithmus, welcher auf dem Generieren und Vereinfachen von Cons-
traints besteht, reduziert den Annotationsaufwand beträchtlich.
Der zweite Teil der Dissertation stellt das Tool JSConTest vor, welches zwei

unterschiedliche Arten von Verträgen, Typverträge (TV) und „Access Permission”
Verträge (APV), unterstützt. TV sind Typsignaturen aus Sprachen wie Java, ML
oder Haskell ähnlich. Jedoch ist die Ausdrucksstärke von TV nicht eingeschränkt,
denn sie werden durch Monitoring überprüft. APV stellen eine neue Methode,
Seiteneffekte von Funktionen zu beschreiben, dar. Eine Formalisierung der APV
zusammen mit eine ausführlichen Erörterung der Designprinzipien bieten eine soli-
de Grundlage für eine Implementierung. Sowohl TV wie auch APV werden anhand
von Fallstudien auf ihre Effektivität beim Softwareentwurf überprüft.
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1 Introduction

Harvard Business School professor John Quelch states in his article “Quantifying
the Economic Impact of the Internet” [103] that each Internet job supports approx-
imately 1.5 additional jobs elsewhere in the economy. He estimates the economic
value of the Internet to be $1.1 trillion. Clearly, the Internet is important in our
economy and society.
Recent numbers from W3Techs [116] tell that 90% of the top 1 million websites

use JavaScript as client-side language in their web site. Today’s webpages contain
not just simple, small JavaScript fragments to make the webpage a little bit more
convenient. Today, whole applications with complicated requirements are written
in JavaScript. According to the TIOBE Programming Community index [22],
which measures the popularity of programming languages, JavaScript is among the
most important programming languages in recent years. Thus, finding methods to
make software development more productive in JavaScript is an important task.
One key factor that determines the efficiency of software development is the

choice of the programming language – or from the viewpoint of a researcher in
the field of programming languages – the choice of a set of appropriate language
constructs that make software development efficient. Measuring the impact of
choosing a programming language is a difficult task [13], but it is apparent that
the influence of the programming language is rather high.
For JavaScript, some particular problems come to mind. For example all

JavaScript fragments included in a webpage share the same global environment, a
problem addressed by many recent publications [27, 67, 79, 80]. The difficulties
have emerged because JavaScript grew out of its originally intended use, which
was to write small scripts to make web pages interactive and comfortable. Other
problems are caused by the automatic value conversion [114], the execution of code
using eval or a poorly designed language construct that breaks static scoping called
with-statement. To make the situation worse, JavaScript lacks many features that
are usually considered as very important for large-scale software development. It
does not provide a package management system. It lacks facilities for data encap-
sulation. It supports only a dynamic type system. Therefore, a lot of common
programming erros, for example calling a method that is not supported by an
object, cannot be inhibited.
Programming languages today offer software developers two different kinds of

mechanisms to increase productivity of the software development process, static
approaches and dynamic approaches.
Static mechanisms [47–49] ensure that a program fulfills a property by analyzing

the program source code. Unlike dynamic approaches, a static analysis does not

1



1 Introduction

execute the program to achieve its results. Static analyses differ a lot in the goal
they try to obtain. Some systems only focus on generating good suggestions or
warnings for the programmer. Consequentially, the programmer gets false positives
and false negatives from these kind of systems. These systems do not give a
guarantee that the warning is actually based on a programming error, and they
also do not guaranty that a programming error does not exist if no warning is
presented. An example for such a system is JSLint [24], a program which reports
warnings about bad style, bad practice or typical pitfalls in JavaScript source code.
JSLint is based on a simliar system called Lint developed at Bell Labs by Stephen
C. Johnson for the programming language C during the 1970s.
Nowadays, static analyses typically provide a soundness result; that is, if the

analysis does not present a violation, a specific kind of error cannot happen during
all possible program executions. Consequentially, a static analysis gives a guaranty
about the absence of specific kinds of errors. As an example, in the type system
of Java it is not possible to multiply strings with integers. Such systems are often
integrated with the compiler realized as a type checker.
Verification [12, 58, 76, 97] is another kind of static analysis. Unlike type sys-

tems, verification is a semiautomatic process. That means, a person has to help
the proof assistent to complete its task. Hence, verification is clearly much more
powerful with respect to the properties it can establish. As an example, a typical
property that is too complicated to prove for most static type systems is to prove
the absence of an index out of bounds errors for arrays in a given program.
Dynamic approaches [21, 31, 78, 84, 108] take a different path. Instead of

proving that a program fulfills its specification, dynamic approaches execute the
program. Therefore, they cannot guarantee a termination of their analysis, because
the program may not terminate. Typically, dynamic methods can only provide
evidence about the presence of an error. Only in rare cases1 these methods are
able to prove the absence of erros. Their strength is that each time they find
an error in the program, they come up with an example that spots the error.
Correcting a program having such a counter example at hand is much simpler
than doing the correction based on a the result of a static analysis. In the latter
case the programmer needs a lot of knowledge about how the static analysis works
to correct the bug.
The first part of this dissertation presents a static type system for JavaScript. It

guarantees the absence of null pointer exceptions for JavaScript while supporting
the initialization of cyclic object structures. In JavaScript this task is much more
difficult than in classical languages as C, C++ or Java because the set of fields
(or properties) for an object is not known statically. In Java or C++ for example,
the set of fields of an object is determined by the class. Inheritance, as present
in these languages, also does not break this guarantee, because it only allows to
extend the set of available fields. In these languages it is safe to conclude from the
static type of a variable that the corresponding object always has the appropriate

1If the input domain is not dividable into a finite class of equivalent inputs.
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field during program execution.
Since there is no static class information available, significant challenges arise

when one is confronted with the task to design a static type system for JavaScript.
One critical question is how to abstract from actual objects. The type system of the
first part follows the approach of Jones and Muchnick [68] to use allocation points
to abstract over objects. But instead of using one abstraction per allocation point,
the type system uses two abstractions. One abstraction is used to represent all old
objects, and one is used to represent the most-recent object. This idea is based
on the work of Balakrishnan and Reps [9], who call the idea recency abstraction.
Because a one-to-one relation between the type and value level is established for
most-recent objects, the type system can safely allow strong updates; that is, the
type system safely allows a type change for properties of most-recent objects.
For a dynamic approach the first question typically is, what is the property

that should hold for a program. The next step is to decide, depending on the
property, what kind of inputs are used to execute the program. Today, especially
in dynamically typed languages like JavaScript, it is common to create a large test
suite with a lot of test cases to ensure correctness of programs.
In addition to a set of test cases to assure a property, one can formulate the

property in a more general form and let a monitoring approach observe the property
during program execution. For example, a function sum that computes the sum
of a list of natural numbers2 fulfills the following property: sum(l) < sum(x :: l) if
x :: l is the list l extended with the element x.
The second part of this dissertation presents JSConTest, a tool for partial spec-

ification of JavaScript operations. To use JSConTest, the programmer annotates
his JavaScript functions with type signatures. JSConTest uses a dynamic mon-
itoring approach to detect if a type signature of an annotated function is valid.
Additionally, JSConTest uses the type signatures to randomly generate input val-
ues for operations. This dual role of type signatures makes the approach efficient
because the software developer has a simple method at hand to create a random
test suite and at the same time to observe the types of his operations. Because
observing the correctness of type signatures not only makes sense during random
testing, JSConTest offers a monitoring facility capable of observing the types of
values during execution. It can be used for regression testing, unit testing, system
testing and during actual execution in the browser of the webpage visitor.
But type signatures specify only the functional behavior of an operation. Be-

cause JavaScript is an imperative language, it is also important to specify the side
effects an operation performs. The observation that all read and write accesses
in JavaScript can be expressed using a base object, a property path (a list of
properties) and a classifier to specify if the access is a read or write operation let
us define an access permission contract (APC) as set of classified access path. A
developer can enrich the type signatures of operations by an APC to specify what
read accesses and what write accesses are allowed to be performed by the function.

2N+, see Section 1.3
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MenuItem
name: String
x,y,w,h: Integer

layout(x,y)

SeparatorItem

onclick()

Submenu
orientation : String

l1
r1

Figure 1.1: Class diagram of a menu class hierarchy.

Program 1.1 JavaScript – Menu.

1 /∗c (int, int) → {w:int, h:int} ← type signature
2 with [this./l|r/∗./x|y|h|w/] ← access permission contract
3 ∗/
4 function layout(x, y) { /∗∗ source code of layout function here ∗/ }

As an example, consider the class hierarchy from Figure 1.1. A MenuItem is either
an Item, a Separator or a Submenu. The layout function, which has the purpose
to compute the positions of the different elements on the screen, carries the type
signature and APC as shown in Program 1.1. The type signature expresses that
the function takes two integer numbers and returns an object that contains the
two properties h and w. The syntax for APCs is similar to JavaScript Regular Ex-
pressions (regular expression literals are enclosed in slashes in JavaScript). In the
example, this specifies the base object, /l|r/∗ grants the right to traverse the heap
by following the properties l and r arbitrary often, and /x|y|h|w/ states that the
function is allowed to modify the properties {x, y, h, w}. Semantically, the APC
of the layout function states that the function is allowed to modify the positions of
all tree elements, but not to modify the structure of the tree.
Instead of going on to explain how type signatures and access permission con-

tracts work in detail, we proceed by stating the contributions of this dissertation.

1.1 Contributions

The first part of the dissertation presents a static type system, which is based on
joint work with Peter Thiemann [56, 57], which makes the following contributions:

• It presents JSC, a fully formalized core language for JavaScript with its
small step operational semantics.
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1.2 Outline

• It formalizes JSR, a core calculus similar to JSC that uses the idea of re-
cency abstraction in its static type system. It proves type soundness, deter-
minacy of evaluation and the decidability of type checking and type inference
for JSR.

• It discusses the extension of JSR with features that are important for the
full JavaScript language and presents formalizations for some extensions.

• Since type inference for JSR is expensive, the dissertation presents a prac-
tical solution for inferring the places of demote expressions and abstract
locations in form of simple preprocessing steps.

It sketches a constraint generation and constraint solving algorithm, which
is implemented as a prototype and available on the web [51]. The implemen-
tation contains approximately 9000 lines of OCaml code.

The second part of the dissertation presents a dynamic contract system for
JavaScript. It is based on joint work with Peter Thiemann [53–55] and Annette
Bieniusa [53]. It makes the following contributions:

• It introduces a contract system based on simple type contracts to dynamically
ensure type safety for JavaScript.

• It presents access permission contracts (APC), which are used to specify the
side effects of functions. It explores the design space for APC and formalizes
a calculus of APC.

• It presents case studies to show the efficiency of contracts and APC using
the method of mutation testing.

• It illustrates an inference algorithm for access contracts based on dynamic
monitoring.

• A prototype implementation of contracts, access contracts and the source
code of case studies is available on the web [52]. The implementation con-
sists of about 10,000 lines of OCaml code and approximately 15,000 lines of
JavaScript code.

1.2 Outline

After the introduction Chapter 2 introduces the aspects of JS relevant to this
dissertation.
The first main part of this work presents a static type system for JavaScript.

It starts with an introduction to the idea of recency abstraction (Chapter 3),
which was invented in the context of abstract interpretation [9]. It continues to
present the formal system of the core calculus for JSC and JSR in Chapter 4.
This chapter also contains the soundness proof of JSR. The type inference for
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JSR is presented in Chapter 5 together with the poof of decidability of type
inference. Chapter 6 presents extensions to JSR and discusses how to include the
most important language features of JavaScript that are not represented in JSR.
Chapter 7 compares the work with the literature.
The second part of the work starts by giving a short introduction into the con-

tract and access contract system from a user perspective in Chapter 8. Next,
Chapter 9 discusses the design principles on which the access contract system are
based. In Chapter 10 the access inference algorithm is presented and the soundness
of the algorithm is proved. Chapter 11 presents the implementation of JSConTest.
The case studies done to provide evidence that the contract and access contract
system is useful are presented in Chapter 12. Chapter 13 presents related work.
The dissertation finishes with a conclusion in Chapter 14.

1.3 Mathematical Notation

Logical Foundation The symbol ∧ stands for logical and, the symbol ∨ for logical
or, the symbol→ for the logical implication and ¬ is logical negation. The universal
quantifier ∀ and the existential quantifier ∃ denote all and exists as usual in first
order logic. As usual in ZFC, for a set A, a ∈ A denotes that a is an element of
A, and a = b denotes that a is equal to b.
For a relational symbol R and a first order formular F let ∀x ∈ R : F be

a shortcut for ∀x(Rx → F ). We often omit existential quantifiers, because the
formulas are easier to read without having them written down. For an example
consider the next paragraph.

Sets For a set A let 2A denote the power set of A; that is the set of all subsets of
A. For two sets, A and B, A∪B denotes the union (A∪B := {a | a ∈ A∨a ∈ B})
of the sets A and B, A ∩ B := {a | a ∈ A ∧ a ∈ B} the intersection of A and
B and A − B the difference, {a | a ∈ A ∧ a /∈ B}. The subset relation for two
sets A and B, A ⊆ B, holds, if all elements from A are elements of B, so to say:
A ⊆ B iff ∀a(a ∈ A→ a ∈ B).
For sets Ai let A1 × · · · × An = {(a1, . . . , an) | ai ∈ Ai} denote the Cartesian

product of the sets Ai. The elements of A1 × · · · × An are called n-tuples. For a
set A, which contains n-tuples, A↓i projects out the ith component for all elements
of A: A↓i := {xi | ∃x1 . . . ∃xi−1∃xi+1∃xn(x1, . . . , xn) ∈ A}. Often, we omit the
existential quantifiers and write A↓i := {xi | (x1, . . . , xn) ∈ A}.
For a set A and a formula f , ∃≤1x ∈ A : f means there exists at most one

element in A, named x, such that f is fulfilled. This is an usual extension to first
order logic. It can be defined easily as a shortcut:

∃≤1x ∈ A : f ::= ¬∃x ∈ A : f ∨ ∃x ∈ A : (f ∧ ∀x′ ∈ A : f [x 7→ x′] =⇒ x′ = x)

Popular Sets Let N be the set of non-negative integers (N := {0, 1, 2, . . .} and
let N+ be the set of positive integers/natural numbers (N+ = {1, 2, 3, . . .}).
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We denote with Prop the set of property names, which is an unspecified, infinite
countable set of strings. We use the metavariables a, b and p, q to range over
properties. The set Variable is an infinite countable set of variable names and
we use typically x and f as metavariables to range over variables. The set Value
is an infinite countable set of values that always contains the special value udf.
Typically, we use v as a metavariable to range over values. Since the precise
definition of Value differs in the two parts of the dissertation, it is defined precisely
in the corresponding chapters.

Functions dom(f) denotes for a partial mapping f : A → B the domain, f ↓ X
restricts the mapping f to the domain dom(f)∩X and f ↑ X restricts the mapping
to the domain dom(f) −X. The notation f : A

fin−→ B is the set of finite partial
functions from A to B. To write down functions, we use the notation ∅ to denote
the empty function, and f [a 7→ b] to define the function that returns b for the
input a and the same value as f for all other inputs.

Property Maps In JavaScript a special kind of function makes it less complicated
to formally define the calculus. We call this kind of function property maps. A
property map m is a total function m : Prop → Value. It takes a property as
argument and returns a value. A property map also fulfills that m(a) 6= udf for
finitely many a ∈ Prop. In order to obtain a convenient presentation, we define
{} to be property map that returns always udf. The property map m{a 7→ v} is
the map, which returns v for the property a, and the same value as m for all the
other properties. Hence, we define map lookup m$a for a property map m and a
property a as follows:

{}$a = udf

m{a 7→ v}$a = v

m{b 7→ v}$a = m$a if a 6= b

For a property map m, dom(m) is not defined as it is usual for functions (which
will always return Prop because m is a total function over the set Prop):

dom({}) = ∅
dom(m{a 7→ v}) = dom(m) ∪ {a}

Implicitly, we have already defined a map update operation m{a 7→ v}, because
for a map m and m′ = m{a 7→ v} it holds that ∀b ∈ Prop : m′$b = m$b if a 6= b,
and m′$a = v.
To state that a function is a property map, we write f : Prop

prop−→ Value from
now on.
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Heaps Heaps are finite functions from references to objects. Objects are property
maps. Therefore, we use the notation for map lookup and map update for heaps
and the property map lookup notation for objects. For example, H(i)$a is a map
lookup, followed by a property lookup. It returns the content of the property a
for the object stored under reference i. The notation H{(i)(a) 7→ v} is a shortcut
for: H[i 7→ H(i){a 7→ v}] and updates the property a of the object stored under
reference i in the heap.
We often write down heaps using JavaScripts’ object literals:

[i 7→ {a : va, b : vb}, j 7→ {}] .

The above heap contains two objects, the first at position i, the second at position
j. The object at position i has two properties, a and b. The corresponding values
are va and vb. The object at position j is the empty object. We consider the above
heap as syntactic sugar for:

[i 7→ {}{a 7→ v1}{b 7→ v2}, j 7→ {}] .
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2 JavaScript

JavaScript is a programming language developed originally by Netscape to support
dynamic web sites in its favorite web browser Netscape Navigator [85, 86]. At the
beginning the language was not equipped with a language definition, and like
many other scripting languages it has grown evolutionary, for example PHP [99]
has evolved similarly. The language specification of JavaScript is published since
1998 under the name ECMAScript [59]. It was also standardized by ISO/IEC [62].
In the year 2005, the specification was extended under the name ECMAScript for
XML (E4X) [61]. Later the fifth edition of ECMA-262 introduced a lot of new
features to the language [60].
This dissertation works with the third edition of the language specification, be-

cause it is the one that is implemented in most browsers. The E4X specification
never was fully supported by a large majority of the browsers. Even if the de-
veloper version of a browser (e.g. Firefox 4.0 Beta) does support the new fifth
language specification, JavaScript programmers cannot rely on the features of the
fifth edition. JavaScrip referes in this dissertation, if not mentioned otherwise, to
the third version of the ECMAScript specification from 1998.
The language specifications [59–61] do not define a single programming language,

but a set of languages due to the fact that JavaScript is designed to be integrated
into an environment. In almost all situations this environment is a web browser.
But nowadays JavaScript also found its ways into other environments, for example
the node.js project [90] provides a possibility to run JavaScript code on the server
side. It is also possible to use JavaScript interpreters that do provide their own
environment, for example the Java Project Rhino is a JavaScript interpreter written
in Java [113].

2.1 Objects

JavaScript is an object oriented programming language. But it is not class based,
as most object oriented programming languages are. In JavaScript objects are hash
maps from strings to values; that means each object in JavaScript carries a mapping
from property names to values with it that is used to perform property reads and
property writes. Additionally to that map, a mechanism based on prototype links
is used. Either a constructor call or an object literal is used to create objects.
Calling a constructor is done with the keyword new, while an object literal is just
a list of property/expression pairs, separated by a colon and surrounded by curly
braces. The object literal provides a compact notation for object creation. But it
lacks the possibility to set the prototype of the object. Consider Program 2.1 for an

9



2 JavaScript

Program 2.1 JavaScript – Constructor and Object Literal.

1 var proto = { p: "value", q: "value2" };
2 var f = function f(p) {
3 this.p = p;
4 return this;
5 }
6 f.prototype = proto;
7 var o = new f("test");
8 alert(o.p); // shows "test"
9 alert(o.q); // shows "value2"

proto

p q

value value2

f

prototype

o

p

test

Figure 2.1: Object graph for Program 2.1. The arrow from f to proto is a
common reference to the proto object. The dashed arrow represents the implicit
prototype link from o to proto.

example. The object literal in line 1 creates an object with two properties: p and
q. The property p carries the string value "value" and the property q the string
value "value2". In Figure 2.1 the object proto is represented by a box with a table
that contains the corresponding entries. If objects are created using a constructor,
as it is done in line 7 of the example by the expression new f("test"), the prototype
mechanism is used. The prototype reference for the object created by the new
expression is defined by the constructor. In JavaScript, functions are objects, too.
Hence, a function may carry properties. If a function does have a property of name
prototype, the property value is the source for setting the prototype link for a new
object that is created if the function is used as a constructor. In the graphical
representation the function f has a property prototype that carries a reference to
the object proto. The image visualizes that by an arrow from f to proto. In the
example the expression new f("test") creates a new object o, which has a prototype
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2.2 Functions

link to the object proto. The image visualizes the prototype link as a dashed arrow
to avoid confusion with common references. The property prototype is a common
property, except that it is used if the function is called by a new expression.
On the other hand the implicit prototype link is special. There does not exist
any possibility to directly access the implicit prototype link in JavaScript1. The
implicit prototype link is used in JavaScript to model inheritance.
For objects without implicit prototype links, property read is simple. If there

exists an entry in the hash table the corresponding value is returned. If there does
not exist an entry for the property the property read returns the default value
undefined. So in the example the expression proto.p return "value", while proto.x
returns undefined.
For objects with an implicit prototype link property read works a little bit

different. First, the property map of the object itself is considered. If an entry
for the property exists in the property map the corresponding value is returned.
As an example the property read in line 8 returns "test". But if the property
map does not have an entry for the property, the implicit prototype link is used.
Therefore, the property read in last line returns "value2". Only, if no object in the
prototype link chain contains a corresponding property the default value undefined
is returned by a property read.
Property writes do not consider the prototype chain; that means, for an ex-

pression o.p either the entry p is created in the hash table of the object o, or the
entry is overridden. Further information about the prototype mechanism can be
found in the language specification. A more practical approach, on how to use the
mechanism, is presented in the book “JavaScript: The Good Parts” from Douglas
Crockford [23].

2.2 Functions

In JavaScript functions are first class citizen’s of the language. This means, func-
tions can be passed around as any other value, especially by passing a function
as a parameter to other functions. Hence, in this sense, JavaScript is a functional
programming language. It fully supports higher order functions, which makes the
event driven programming style possible.
The event driven programming style nowadays is not only used inside of

browsers, for example the node.js project [90] (originally invented by Ryan Dahl,
now organized as a community project) does use the event driven approach in a
server setting. This heavily depends on the possibility to work with functions as
first class values.

1A lot of implementations do provide this access by the special property __proto__. But this
special syntax is not supported by ECMAScript.
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Program 2.2 JavaScript – Conversion from Float to String.

1 var x = 7;
2 var y = 6;
3 var z = x ∗ y;
4 // Shows a dialog with "The answer to life, ...: 42".
5 alert("The answer to life, ...: " + z);

2.3 Automatic Value Conversion

In a lot of programming languages a static or dynamic type system prohibits the
combination of values from different types. For example addition of a string value
and a float value is typically not allowed. In contrast, JavaScript tries to not impose
any restrictions on the operations the language provides. Instead of throwing a
runtime error or presenting a static type error, JavaScript converts values from
one type to another, depending on the use of the value. This is convenient for the
programmer, if the automatic conversion works as expected. Consider Program 2.2
for a corresponding example.
But a very negative aspect of the conversions is that there are cases in which

a conversion results in unexpected behavior. Let us have a look at an example
for a situation, where the automatic conversions may be the reason for an error.
In Program 2.3 the first two lines define three variables, x, y and v. The variable
x is initialized with an object containing the property a carrying the float value
1, while y is initialized with the float value 2, as is v with 0. The next lines
are straightforward and work as expected, but in the last two lines a surprising
behavior is observed. Even if the assignment y.a = v does not throw any error, the
two values displayed to the user in the last line are different. Therefore, setting
a property of a float value is not possible, because float values are no objects,
and hence do not carry properties. But because the programmer does a property
assignment to y, JavaScript converts the float value bound to the variable y into an
object, and performs the property assignment using this temporary object. In the
next line a property read makes another conversion into an object necessary. But
here another temporary object for y is created, which does not carry the property
a. Hence, the first alert in the last line shows undefined instead of the expected float
value 2. Thiemann reports this surprising behavior first [114] and demonstrates
an issue a programmer has to face if he uses the language.
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2.3 Automatic Value Conversion

Program 2.3 JavaScript – Objects.

1 var x = { a : 1 };
2 var y = 2, v = 0;
3 x.a = x.a + 3;
4 alert(x.a);
5 alert(x.b);
6 v = y.a + 2;
7 y.a = v;
8 alert(y.a); alert(v);
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Part I

JSR – A Static Type System
Based on Recency Abstraction
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3 Abstract Interpretation

This chapter introduces the idea of recency abstraction in the setting of abstract
interpretation, which is the original setting in which this technique is used [9].
An abstract interpreter simulates a program execution by performing similar

execution steps as a common interpreter does. The difference is that the abstract
interpreter uses abstract values instead of concrete values. If the abstract values
are chosen properly, the abstract interpreter can ensure that the abstract execution
terminates yielding a safe approximation of all possible program executions. The
connection between abstract values and concrete values is established by a function
from concrete values to abstract values, which we call abstraction. The key idea
behind the abstraction is to make the set of abstract values significantly simpler
than the set of concrete values. Typically the set of abstract values forms a lattice
with a finite chain condition [88].
Let us assume that for a simple programming language the concrete interpreter

performs an operation o on the two values v1 and v2 that results in a value v3. An
abstract interpreter with an abstraction

a : value→ absvalue

performs the operation by taking two abstract values a1 and a2 with a(v1) = a1

and a(v2) = a2 and executes the abstract counterpart oa of the operation o. We
choose the abstract counterpart in such a way that it holds:

a(v3) ⊆ a1 oa a2

The above condition is a simple instantiation of the more general guarantee the
abstract interpreter ensures, which is that the abstract interpreter yields a safe
approximation of all possible program executions. In other words, it ensures that
for all possible program executions the result of the program is subsumed by the
result the abstract interpreter computes for the program.
Abstract interpreters typically guarantee the termination of the abstract run of

the program. Therefore, they have to ensure that it executes bodies of loops and
recursive functions only finitely many times. To accomplish termination, different
approaches are possible. A typical solution is to chose as abstract values a lattice
with a finite chain condition. If it is ensured for all basic operations that the corre-
sponding abstract operations are monotone, the abstract interpreter is guaranteed
to terminate. A typical way to get a lattice with a finite chain condition is to chose
a finite set of abstract values.
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3 Abstract Interpretation

x+a y 0 + − {0,+} {0,−} {+,−} >
0 0 + − {0,+} {0,−} {+,−} >
+ + + > {0,+} > > >
− − > − > {0,−} > >

{0,+} {0,+} {0,+} > {0,+} > > >
{0,−} {0,−} > {0,−} > {0,−} > >
{+,−} {+,−} > > > > > >

> > > > > > > >
Table 3.1: Abstract Addition. > is a shortcut for {0,+,−}.

In object oriented programming languages, an example for such a choice is to
abstract from objects and group different objects into classes. A class is an abstract
value of all instances of the class.

abstract value ∼ concrete value
class ∼ object

As another example let us consider a programming language capable of per-
forming typical mathematical operations on integer numbers. An abstraction
a : Z→ 2{0,+,−}, where 2A denotes the power set of the set A, might be:

a(n) :=


{0} if n = 0

{−} if n < 0

{+} if n > 0

For convenience we typically do not write the braces around singleton sets. Ta-
ble 3.1 defines the abstract operation +a : 2{0,+,−} × 2{0,+,−} → 2{0,+,−}, which
corresponds to + over Z (with > = {0,+,−}). The table is computed with respect
to the following observations:

1. Zero is the neutral element of addition.

2. If + or − is part of one of the operants, then it is part of the result set.

3. If one operant contains +, and the other contains −, the result contains 0.

The abstract operation +a ensures that

∀x, y, z ∈ Z : x+ y = z → a(z) ⊆ a(x) +a a(y)

holds; that is, the abstract addition is a safe approximation of the concrete addi-
tion.
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3.1 Recency Abstraction

Program 3.1 JavaScript – bank account example.

1 function Customer(n) {
2 return { name : n }; //@C
3 }
4 function Account(o) {
5 return { owner : o }; //@A
6 }
7 var c1 = Customer("Lee"), a1 = Account(c1);
8 c1.account = a1;
9 var c2 = Customer("Smith"), a2 = Account(c2);

10 c2.account = a2;
11 var c3 = Customer("Hall"), a3 = Account(c3);
12 c3.account = a3;

3.1 Recency Abstraction

For a brief introduction to the idea of recency abstraction in an abstract inter-
pretation setting consider the code from Program 3.1. The function Customer is
the constructor for customer objects, the function Account is the constructor for
account objects. Account objects have a property owner, which is a reference to
the owner of the account. Now often it is desirable that also a customer object
has a reference back to its account. This link is set by the property assignment
in line 8 for the customer with name Lee. The assignment is not done inside the
constructor, because this cyclic reference is not possible to establish at the time,
when the customer constructor is called (the account object, the target of the ref-
erence does not exist at this time). In the next lines the program creates two other
objects.
We now start to explain how an abstract interpreter works by executing the

above program step by step with a concrete interpreter and, at the same time, with
an abstract interpreter. Figure 3.1 contains snapshots of the heaps and abstract
heaps, for example executing the program until line 7 (inclusive) creates a heap
as presented at the top of Figure 3.1. The concrete execution creates an account
and customer object with one link between them. In the next line, the link back
from the customer to the account is established, which results in a cyclic object
structure in the heap.
The abstract interpreter will execute the program similarly. Instead of creating

objects, it creates abstract objects, which we will call classes. A class in the
abstract interpreter describes the shape of the objects connected to the class. The
benefit of working with classes is that the termination of the abstract interpreter
is guaranteed. The termination is ensured by a lot of conditions, but an important
one is that the set of classes for a program is finite. Independent from the number
of objects in the concrete heap, a class describes the shape of all corresponding
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concrete heap abstract heap

after line 7 c1

name "Lee"

a1

owner  

C

name "Lee"

A

owner  

after line 8
c1
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after line 9
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name
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Figure 3.1: Heaps and abstract heaps of Program 3.1. Each line shows the heap
and abstract heap as the program creates them. Rectangles represent objects,
edges references. In the abstract heap a dashed edge represents an unsafe reference.
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3.1 Recency Abstraction

objects. A consequence of this is that the assignment in line 8 has a different
effect than it has in the concrete execution. The abstract interpreter does not
know how many customer objects exist. The only thing it knows is that before
the assignment the shape of all customer objects is as shown in the first line of
Figure 3.1. Therefore, adding the property account to one object only lets the
abstract interpreter conclude that after the assignment, there exists one object
with a property account, and maybe an arbitrary set of objects with the original
shape. Hence, the abstract interpreter merges these two possible shapes in such
a way that the new class reflects both possibilities. To achieve this, the abstract
interpreter adds the property account to the class, but marks it as an unsafe
reference (indicated in the picture by a dashed arrow); that means, a customer
object may have the account property, or a customer object may not have the
property. If the object contains the account property, the value of the property is
definitely a reference to an account object.
Generally speaking, the abstract interpreter ensures in each step that the value

of a property p of a class C is manipulated conservative; that is: for class C and
property p it holds Cold(p) ≤ Cnew(p). Hence, updates performed by the abstract
interpeter are monotone. We call these updates weak updates.
These weak updates, or to stay with our example, the unsafe properties yields of

course into an undesirable situation. Later on, even if in the concrete execution all
customer objects have a reference to their account object, the abstract interpreter is
not aware of this fact. Therefore, reading the corresponding property, for example
to check up on the customer’s money, leads to a false positive; that is, the abstract
interpreter states that there might be an error in the program even if all possible
program executions works as expected.
In such a situation the recency abstraction is helpful to not just support weak

updates. Why not use an abstraction, such that this typical initialization pattern
is handled in the right way? What will happen, if we spend two abstractions for
each kind of object, instead of one? If we have two abstract values for customers,
and two abstract values for accounts available, we can use two of them for the most
recent customer and account, and the other two for all old customers and accounts.
The benefit is that the abstract interpreter has a one-to-one relation available for
most recent objects, as Figure 3.2 shows. The figure contains two different kind
of objects, which is visualized in the figure by different colors. For each kind of
object one class for the most recent object and one class for all the old objects are
available.
The consequence of this abstraction is that due to the one-to-one relation, the

abstract interpreter is able to perform a strong update on the class for the most
recent object; that is, it does not respect Cold(p) ≤ Cnew(p) but overrides Cnew(p)
with an arbitrary abstract value. In our example this results in adding a safe
reference to the account object. Care must be taken, if a new object is created,
because the abstract interpreter has to ensure some invariants. The first invariant
is that in all situations only one object is considered to be most recent. Figure 3.3
shows how the abstract interpreter with recency evaluates the program step by
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objects classes

most recent

old

c3
a3

@C

@A

C

A
a2

a1

c2

c1

Figure 3.2: Relation between objects and classes. On the left rectangles represent
objects. On the right rectangles represent classes. Different kinds of objects are
marked by different colors. Each edge connects an object with its corresponding
class.

step. The most recent classes are marked with @, the “usual” classes handling the
old objects have names analogous to the class names in the version without recency
abstraction. The first thing to notice is that the assignment in line 8 is reflected
by a strong update on the most recent class. Before the creation of the second
objects the Lee object and its account become old. This is reflected in the graph
by removing the @ from the abstraction. Another important step is done before
the Hall object is created. In this state the abstract interpreter has already two
abstractions for each class, but it needs to introduce a new one for the Hall object.
Therefore, it merges the already existing two versions (consider the graph, after
line 10). The result of this merging operation is that the name property now does
not contain a concrete string anymore. It just contains the information that the
property is a string value, because the abstract interpreter has to find a suitable
abstraction for "Lee" and "Smith". We call the process of becoming old for an
object demotion.

3.2 Type System

Why would we like to use a type system to use the idea of the recency abstraction?
There are two answers to this question.

1. A type system can model bidirectional information flow. It is possible to
propagate information in the control flow graph in both directions, making
the system faster in finding a reason for a program rejection or acceptance.

2. A type system can provide a modular way to reason about functions. This
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Figure 3.3: Heaps and abstract heaps with recency of Program 3.1. Each line
shows the heap and abstract heap as the program creates them. Rectangles rep-
resents objects or classes, edges references. In the abstract heap, the rectangles
marked with @ are the most recent classes.
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is an important feature for analyzing libraries.

Using the idea of recency abstraction in a type system setting instead of an abstract
interpreter requires some adjustments. First, a type system, instead of an abstract
interpreter, cannot just decide on demand to merge the shapes of most recent object
and old objects together in order to ensure that the one-to-one relation is garantied.
To keep the two aspects, object creation and object demotion, separated, the type
system has two parts:

• A flow-sensitive part handling the most recent objects

• A flow-insensitive part handling old objects

Due to the flow sensitivity and the one-to-one relation the type system supports
strong updates on most recent objects (that means, an assignment overrides the
content of a property). For the flow-insensitive part, the type system handles
assignments as usual. It ensures that the type of a written value is a subtype of
the type of the property.
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4 The Formal Calculus

This chapter presents two core calculi. Both contain the most important features
of JavaScript from the point of view of this work. Section 4.1 presents the first
calculus – JavaScript Core (JSC). It is a lambda calculus with imperative objects.
It is similar an other core calculus suggestion in the literure [50]. In Section 4.2
we present the second calculus, JavaScript Core Recency (JSR), which extends
JSC with recency information. We present a formal syntax for each of the sys-
tems, a small-step operational semantics and relate the behavior of both systems.
Section 4.3 shows that the only difference between JSC and JSR is that in JSR
some additional steps are performed to model the demotion of objects. Section 4.4
presents the static semantics of JSR. Section 4.5 proves soundness of JSR.
Section 4.6 proves decidability of type checking.
The key point to model recency abstraction in a sound manner is to model the

change for a most recent object to an old object in the right way. We make demo-
tion explicit in JSR by introducing an extra demotion expression. To distinguish
between most recent objects and old objects we model the semantics of JSR with
two heaps. One heap contains all the old objects, the other one contains the most
recent objects. The demote operation than has to move the object from the most
recent heap into the summary heap.

4.1 JavaScript Core (JSC)

JSC is very basic because its main task is to show the similarities between a subset
of JavaScript and JSR. It is an intermediate step between JavaScript and JSR
to convince the reader that adding recency to the semantics does not modify the
behavior of the system.

4.1.1 Syntax

Figure 4.1 presents the abstract syntax of JSC. The language contains values v,
which are either recursive functions recf(x).e with function name f , parameter
name x and body e, or udf or a reference ~i. Programmers are not allowed to
directly include references in program source code. They are only used in the
dynamic semantics as intermediate values.
Top expressions are values or let expressions let x = s in e. Let expressions

are used to sequentially execute the program. A let expression binds the result of
executing the simple expression s to the variable x and then afterwards executes
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4 The Formal Calculus

Prop 3 a countable set of property names
Variable 3 x, f ::= x1 | x2 | . . . countable set of variables

Value 3 v ::= recf(x).e | udf | ~i i ∈ N
TopExpr 3 e ::= w | let x = s in e
Va(r|l) 3 w ::= x | v
SExpr 3 s ::= w | w(w) | new | w.a | w.a :=w
Expr 3 d ::= e | s

Figure 4.1: JSC – syntax. Phrases marked in gray are not written by the
programmer. They arise as intermediate steps in the semantics.

the top expression e. This syntax is similar to A-normal form to economize the
proofs [39].
A simple expression is a variable or value (w), a function application w(w), a

new expression, an expression reading a property of an object w.a or an expression
writing to an object w.a :=w.
The distinction between top expressions and simple expressions is utilized to

make program execution explicit and simple. This is no restriction because the
programmer can always introduce a new variable with a let expression to put the
result of an arbitrary expression at a place where only variables are allowed. Often,
the distinction between top expressions and simple expressions is not necessary,
for example if we establish some properties for both kind of expressions. Hence,
we introduce the metavariable d as an expression.

Convention 4.1.1. The sets Prop, Variable and N are pairwise disjoint sets. udf
is not an element of Prop or Variable.

Figure 4.2 defines the set of free variables fv(d) for expressions and values. It is
straightforward and similar to the corresponding definition in the lambda calculus.

Definition 4.1.2 (Closedness). A value v is closed if fv(v) = ∅. An expression d
is closed if fv(d) = ∅.

Some of our examples make use of additional features of JavaScript that are not
part of the formal calculus. We use conditional expressions, functions with mul-
tiple parameters, and methods as well as several basic values like floats, booleans
and strings. Chapter 6 describes how to include these extensions into the formal
calculus.

4.1.1.1 Example

Program 4.1 shows the relation between JavaScript and JSC. The program creates
an object, adds a property x to the object, stores the function getX in a variable
an executes the function in the last line. Program (a) on the left side is written
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4.1 JavaScript Core (JSC)

fv(x) = {x}
fv(recf(y).e) = fv(e)− {f, y}

fv(udf) = fv(~i) = fv(new) = ∅
fv(let x = s in e) = fv(s) ∪ (fv(e)− {x})

fv(w1(w2)) = fv(w1) ∪ fv(w2)

fv(w.a) = fv(w)

fv(w1.a :=w2) = fv(w1) ∪ fv(w2)

Figure 4.2: JSC – free variables of values and expressions. Inductive.

Program 4.1 JavaScript, JSC – Property Access, Method Calls. A small program
that creates a new object, adds a function as a property to the object and executes
the function as a method call.

1 var o = {};
2 o.x = 5.0;
3 getX = function getX(this) {
4 return this.x
5 };
6 getX(o);

(a) JavaScript.

1 let o = new in
2 let dummy1 = o.x := 5.0 in
3 let getX := (rec getX(this).
4 this.x)
5 in
6 getX(o)

(b) JSC with method extension.

in JavaScript syntax, while Program (b) on the right side is written in the formal
syntax of JSC.
To improve the readability of examples written in JSC, we utilize the following

shortcuts: If a variable bound in a let expression is not used, as in line 2 of the
example, we use o.p := e1; e2 instead of let dummy = o.p := e1 in e2. If a function
makes no use of its name we use λx.e as a shortcut for recf(x).e. The source of
Program 4.1 using these shortcuts can be written as:

1 let o = new in
2 o.x := 5.0;
3 getX := λy.(this.x);
4 getX(o)

4.1.1.2 Substitution

Figure 4.3 defines the capture avoiding substitution d[xi 7→ v] inductively. Basi-
cally the variable xi is replaced by the value v at all places inside an expression
d. As usual, the substitution stops if a local expression (a let or a rec expres-
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4 The Formal Calculus

xi[xi 7→ v] = v

xj [xi 7→ v] = xj

udf[xi 7→ v] = udf

~i[xi 7→ v] =~i

(w1(w2))[xi 7→ v] = w1[xi 7→ v](w2[xi 7→ v])

new[xi 7→ v] = new

(w.a)[xi 7→ v] = w[xi 7→ v].a

(w1.a :=w2)[xi 7→ v] = w1[xi 7→ v].a :=w2[xi 7→ v]

(let xi = s in e)[xi 7→ v] = let xj = s[xi 7→ v] in e

(let xj = s in e)[xi 7→ v] = let xj = s[xi 7→ v] in (e[xi 7→ v]) if xj /∈ fv(v)

(recxj(xk).e)[xi 7→ v] = recxj(xk).e if i = j or i = k

(recxj(xk).e)[xi 7→ v] = recxj(xk).(e[xi 7→ v]) if xj /∈ fv(v)

and xk /∈ fv(v)

d[xi, xj 7→ vi, vj ] = (d[xi 7→ vi])[xj 7→ vj ] if xj /∈ fv(vi)

Figure 4.3: JSC – capture avoiding substitution. Inductive. If not further
specified, let i 6= j and i 6= k. The last line defines the simultaneous substitution
of two variables.
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sions) overlays the scope of the variable xi. Hence, inside the body of a function
expression replacement happens, if xi is unequal to the function name and to the
parameter name. If it is equal to one of these two names, no substitution takes
place inside the function body.
The substitution function is a partial function due to its side conditions xj /∈

fv(v) and xk /∈ fv(v). As an example consider (recf(x).y)[y 7→ f ], which is not
defined. The side conditions ensure that substitution is capture avoiding [100].
The partial definition is not problematic because the evaluation only substitutes
closed values.

Lemma 4.1.3 (Free variables). For an expression d it holds that for all variables
x

fv(d[x 7→ v]) ⊆ (fv(d)− {x}) ∪ fv(v)

Proof by induction over the structure of expressions. We assume that x = xi for a
fixed i.

• Case d = xj : There are two cases, i = j and i 6= j. Both cases yields the
desired result.

• Case d = v′: All cases except the function case are trivial. Assume v′ =
recxk(xj).eb. It holds fv(v′) = fv(eb)− {xk, xj}.
– Case i = j or i = k: The lemma holds because (recxk(xj).eb)[xi 7→ v] =

recxk(xj).eb.

– Case i 6= j and i 6= k: It holds xj /∈ fv(v), xk /∈ fv(v) and
(recxk(xj).eb)[xi 7→ v] = recxk(xj).(eb[xi 7→ v]). By induction, it
holds

fv(eb[xi 7→ v]) ⊆ (fv(eb)− {xi}) ∪ fv(v) .

We conclude:

fv(d[xi 7→ v]) = fv((recxk(xj).eb)[xi 7→ v])

= fv(recxk(xj).(eb[xi 7→ v]))

= fv(eb[xi 7→ v])− {xk, xj}
⊆ ((fv(eb)− {xi}) ∪ fv(v))− {xk, xj}
= ((fv(eb)− {xk, xj})− {x}) ∪ fv(v)

= (fv(e)− {xi}) ∪ fv(v) .

We use in our dynamic semantics simultaneous substitution of two variables
d[xi, xj 7→ vi, vj ]. We can define it as d[xi 7→ vi][xj 7→ vj ]. This definition works
well for our purpose because we always use it with closed values vi and vj . There-
fore, the case in which vi contains xj as a free variable cannot occur.
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H ∈ Heap = N fin−→ Object
o ∈ Object = Prop

prop−→ Value
E ::= � | let x = s in E

S0-App H, (recf(x).e)(v) →0 H, e[f, x 7→ recf(x).e, v]
S0-Let H, let x = v in e →0 H, e[x 7→ v]

S0-New H, new →0 H[i 7→ { }],~i i /∈ dom(H)

S0-Rd H,~i.a →0 H,H(i)$a i ∈ dom(H)

S0-Wrt H,~i.a := v →0 H{(i)(a) 7→ v}, udf i ∈ dom(H)

S0-Let′

H, s→0 H
′, E [v]

H, let x = s in e′′ →0 H
′, E [let x = v in e′′]

Figure 4.4: JSC – small-step operational semantics. Inductive. The semantics is
well-defined, because the implicit precondition of rule S0-Let′ is always fulfilled.
Please consider Lemma 4.1.4 and Lemma 4.1.5 for additional explanation.

4.1.2 Dynamic Semantics

Figure 4.4 presents the small step operational semantics for JSC. The relation→0

takes a heap H and an expression d and yields a possibly modified heap together
with a new expression. A heap H ∈ Heap is a finite mapping from integers to
property maps (h ∈ Object), which represent objects. Property maps are finite
maps from properties to values. The evaluation makes use of the evaluation context
E .
The rule S0-App defines function application. It substitutes the parameter x

with the value v and the function name f with the function itself inside of the body
e of the function. Hence, on the right hand side of the reduction rule S0-App the
new expression is e[f, x 7→ recf(x).e, v]. The heap stays unchanged.
The second rule (S0-Let) substitutes the variable x inside of the body of the

let expression with the value v and does not change the heap.
The rule S-New creates a new object in the heap H at position i if the position

is free. The object does not have any properties. Hence, { }, the empty property
map, is stored in the heap.

S0-Rd states how property read works. ~i.a reads the property from the object
H(i). Property lookup yields a value H(i)$a, which is the new expression of the
reduction rule. The lookup in a property map is written o$a for an object o and
a property a. It is defined in Section 1.3. The heap content does not change.
The rule S0-Wrt updates or adds a property. ~i.a := v adds or modifies the

property a of the object H(i) to v. Map update works on property maps in
exactly the same manner as it works for maps, it changes the binding for a if it
exists, and it adds a new binding for a if the binding does not exist. It is defined
in Section 1.3. The result of a write operation is always udf.
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The rule S0-Let′ is the context rule that evaluates the right hand side of let
expression s if it is not a value. It makes use of the evaluation context to flatten
the let expressions. The following example demonstrates the described behavior.

4.1.2.1 Example

The example shows why the rule S0-Let′ needs to flatten let expressions. The
program has no practical purpose but to show how the evaluation works and addi-
tionally demonstrate how an infinity loop works. It does not use objects. Hence,
the heap is omitted in this example for convenience.

1 let f = rec f(x).
2 let o = f(x) in
3 o
4 in
5 let u = f(udf) in
6 u

Because the right hand side of the expression, rec f(x)... o, is a value, the exe-
cution substitutes the right hand side of the let expression into the body of the let
expression. The rule S0-Let is used for this substitution, and the result is:

1 let u = (rec f(x).let o = f(x) in o)(udf) in
2 u

The value (rec f(x).let o = f(x) in o) is a function. We write F as a shortcut for it.
The right hand side of the outer let is a function application, which evaluates into
let o = F(udf) in o using S0-App to substitute f with its body (F) and x with udf.
Now notice that F itself is a value, while let o = F(udf) in o is a top expression.
Simply changing the right hand side of a let expression from a function application
into the body of the function will result in invalid code because on the right hand
side of a let, let expressions are forbidden. Here, the evaluation context helps,
because we can write every top expression as E(w) for some variable or value w
(see Lemma 4.1.4). In our case it holds:

E [o] = let o = F(udf) in o

Hence, we can apply S0-Let′ and our top expression evaluates to:

1 let o = F(udf) in
2 let u = o in
3 u

Here, the let expressions are flatted, and the resulting expression is a correct top
expression for JSC.
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height(x) = 0

height(recf(y).e) = height(e) + 1

height(udf) = height(~i) = height(new) = 0

height(let x = s in e) = max(height(e), height(s)) + 1

height(w1(w2)) = max(height(w1), height(w2))

height(w.a) = height(w)

height(w1.a :=w2) = max(height(w1), height(w2))

Figure 4.5: JSC – height of expressions. Inductive.

4.1.3 Formal Properties

4.1.3.1 Well-Defined

Lemma 4.1.4 (Context for top expressions). For all top expressions e, there exists
exactly one evaluation context E and a value or variable w, such that e = E [w].

Proof by contradiction. We assume the lemma is not correct. As a consequence,
there exists at least one top expression such that there exits no E [w] with E [w] = e.
Because there may exist more than one of such an expression, let e be an expression
with the smallest height (Figure 4.5), for which E and w do not exist. Either e
is a let expression, or a variable, or a value. The two last cases are not possible
because for E = � it holds E [w] = e.
Now, assume e = let x = s in e′. Since e′ is a subexpression of e, the height

of e′ is smaller then the height of e. Since e is an expression with minimal height
that does not have a suitable context, for the expression e′ there exists E ′[w] with
E ′[w] = e′. As a consequence, the context E = let x = s in E ′ exists and it holds
E [w] = e. This is a contradiction to our assumption that the set of expression, for
which no suitable E [w] exists, was not empty.
Hence, it is left to prove the uniqueness of E and w. The uniqueness of E and w

is a direct implication from the definition of the evaluation context.

Lemma 4.1.5 (Context existence). For heaps H,H ′, a simple expression s and a
top expression e, if H, s→0 H

′, e, then there exists exactly one evaluation context
E and a value or variable w, such that E [w] = e.

Proof by induction over →0.

• Case S0-App, S0-Let, S0-New, S0-Rd, S0-Wrt: The right hand side of
each rule is a top expression. We apply Lemma 4.1.4.

• Case S0-Let′: By induction the implicit precondition of the rule S0-Let′ is
fulfilled. We have to proof that for E [let x = v in e′′] there exists exactly one
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evaluation context E ′ and a value or variable w such that E ′[w] = E [let x =
v in e′′]. By definition of E is holds that E [let x = v in e′′] is a top level
expression. Hence, we apply Lemma 4.1.4.

The above lemma ensures that the implicit precondition in the evaluation rule
S0-Let′ is always fulfilled and that the evaluation context is unique. This fact is
used in a lot of the following proofs implicitly.

Lemma 4.1.6 (Substitution with closed values). For a closed expression d an
evaluation step H, d →0 H

′, d′ yields a closed expresion d′. Substitution applied
during evaluation only takes closed values as its parameter.

Proof by induction over →0. A simple case distinction over the rules in Figure 4.4
proves the lemma.

A consequence of Lemma 4.1.6 is that our definition of simultaneous substitution,
even if it is a partial function, is always applicable during evaluation. Hence, the
side conditions of the substitution definition are never the reason for an expression
not to evaluate further.

4.1.3.2 Determinism

Determinism (specifically causal determinism) is the concept that
events within a given paradigm are bound by causality in such a way
that any state (of an object or event) is completely, or at least to some
large degree, determined by prior states. [119]

Following the above definition, the semantics of JSC is deterministic because
it is completely predictable what the next step in program execution will be. The
only exception is the rule S0-New, which only enforces to pick a reference that
is not already used for another object. Hence, it does not specify what concrete
reference is used for the new object.
Therefore, we can state that the semantic is deterministic if we ignore mem-

ory positions of objects. This is typically a statement that is strong enough and
sufficient for a high level programming language.

Definition 4.1.7 (Equivalence modulo memory allocation). An expression e1 is
equivalent modulo memory allocation to e2 (e1 ≡ e2) if there exists a bijection
b : N→ N with e1 ≡b e2. (cf. Figure 4.6, EQ)
A heap H1 is equivalent modulo memory allocation to H2 if there exists a bijection

b : N→ N with H1 ≡b H2. (cf. Figure 4.6, EQ)

Lemma 4.1.8. The relation ≡ is an equivalence relation.

Proof. We have to prove that the relation is reflexive, symmetric and transitive.
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EQbVar
x ≡b x

EQbConst
udf ≡b udf

EQbRef
i = b(j)

~i ≡b ~j

EQbFix
e1 ≡b e2

recf(x).e1 ≡b recf(x).e2

EQbLet
e1 ≡b e2 s1 ≡b s2

let x = s1 in e2 ≡b let x = s2 in e2

EQbApp
w1 ≡b w2 w′1 ≡b w′2
w1(w′1) ≡b w2(w′2)

EQbRead
w1 ≡b w2

w1.a ≡b w2.a

EQbWrite
w1 ≡b w2 w′1 ≡b w′2
w1.a :=w′1 ≡b w2.a :=w′2

EQbHeap
∀j ∈ dom(H2) : ∃=1i ∈ dom(H1) : b(i) = j

∀i ∈ dom(H1) : ∀p ∈ dom(H1(i)) : H1(i)$p ≡b H2(b(i))$p

H1 ≡b H2

EQ
∃b : N→ N, b is a bijection X ≡b X ′

X ≡ X ′

Figure 4.6: JSC – equivalence modulo memory allocation. The inductive defini-
tion establishes an equivalence class over expressions and heaps. Please note that
∃=1 ensures that there exists exactly one element in the domain of H1 for each j
in the domain of H2 (cf. Section 1.3). X is an arbitrary syntactic entity.

• Case Reflexivity: ≡id is reflexiv. Hence, there exists a bijection b (b = id)
that proves the reflexivity of ≡.

• Case Symmetry: We prove that for X and X ′, it holds X ≡b X ′ iff X ′ ≡b−1

X. The proof is immediate by induction over the definition of ≡b.

• Case Transitivity: For X ≡b X ′ and X ′ ≡′b X ′′ it holds X ≡b′◦b X ′′. b′ ◦ b
exists, because the function b and b′ are both total. The proof is immediate
by induction over the definition of ≡b.

Lemma 4.1.9 (Substitution determinism). For e1 ≡b e2 it holds for all x and
v1 ≡b v2:

e1[x 7→ v1] ≡b e2[x 7→ v2]

Proof by induction over the structure of e1. Without loss of generality we assume
x ∈ fv(e1). All cases are immediate or by induction.
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Lemma 4.1.10 (Determinism). For H1 ≡b H2 and e1 ≡b e2 with H1, e1 −→ H ′1, e
′
1

and H2, e2 −→ H ′2, e
′
2 then there exists a bijection b′ : N→ N with

H ′1 ≡b′ H ′2 and e′1 ≡b′ e′2

Proof by induction over −→.

• Case S-App, S-Let: We apply Lemma 4.1.9.

• Case S-New: Inversion of the definition of ≡b yields the desired result,
because the side condition of the rule ensures that fresh memory places are
chosen.

• Case S-Rd, S-Wrt: immediate.

• Case S-Let′: immediate by induction.

Corollary 4.1.11. For an closed expression e with ∅, e −→n H1, e1 and ∅, e −→n

H2, e2 then e1 is equivalent modulo memory allocation to e2 and H1 is equivalent
modulo memory allocation to H2.

Proof by induction over −→∗. A simple consequence from Lemma 4.1.10.

Convention 4.1.12. A configuration (H, e) is a pair containing a heap and an
expression. From now on, two configurations are considered syntactically equal
if their heaps and expressions are equivalent modulo memory allocation (with the
same b).

4.2 JavaScript Core Recency (JSR)

Recency is straightforward to handle in an abstract interpretation setting (cf.
Chapter 3), but lifting the concept to types requires some care. There are four key
aspects that need to be reflected in the design of the type system.

1. There must be distinct types for recent objects and aged objects: singleton
and summary pointer types.

2. Singleton pointer types must be subject to strong update (cf. Chapter 3).

3. Singleton pointer types must be “demotable” to summary types.

4. While an abstract interpreter can demote a singleton pointer to a summary
pointer “online” at the respective new expressions, a type system must demote
more conservatively to stay tractable.
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This section adheres to the syntax defined in Section 4.2.2. It is similar to the
syntax of JSC.
The main difference between JSC and JSR is that JSR provides additional

structure for the heap while JSR does. The structure JSR introduces is that
each object is grouped by an abstract location from a set Location. Every reference
~i is tagged by an abstract location l ∈ Location. A reference in JSR is written
(q l, i) for i ∈ N and l ∈ Location. The qualifier q is part of the reference for the
following reason.
JSR runs with two heaps, a most recent heap and a summary heap. Inside of

the most recent heap only one object is allowed at the same time for each abstract
location l. The object that exists in the most recent heap is the most recent object
for the abstract location. The summary heap collects all aged objects. Hence, it
may contain more than one object for an abstract location l.
q is an additional qualifier that distinguishes two situations. First, if the qualifier

is ˜ then the object is a summary object and lies inside of the summary heap.
Second, the object is a most recent object, and it lives in the most recent heap.
The qualifier for this situation is @.
We use two heaps instead of one and attach the references by a qualifier because

based on the qualifier it is now easy to determine if an object is most recent object
or an aged object.
Please keep in mind that in JSR the following invariants hold to keep the

system tractable:

Definition 4.2.1 (INVOH). The invariant about ”most recent Objects in the most
recent Heap” states that for each abstract location at most one object exists in the
most recent heap.

Definition 4.2.2 (INVDH). The invariant about ”Disjoint Heaps” states that the
domain of the most recent heap and the domain of the summary heap are disjoint.

4.2.1 Examples

Before we present the formal system of JSR, we discuss by the use of some
examples how we can extend our calculus JSC to support recency abstraction.

4.2.1.1 Object Demotion

The following example will introduce the idea of recency, and how it could be
modeled in a system that is similar to JSC. We make use in this section of
some abbreviations as in Section 4.1. We also use some base types like float
or boolean. A heap is a finite function from references to objects, as defined in
Figure 4.4. Program 4.2 demonstrates a problem that arises by introducing recency
to a system, in which it is possible to distinguish if an object is most recent by
looking at the reference. A reference needs to change from (@l, i) into (̃ l, i) because
a new object for the abstract location l is created by a new expression.
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Program 4.2 JSC – summary pointers.

1 let x = newl in x.a := 42.0;
2 let y = newl in y.a := "flush";
3 x.a

In the first line a new empty object is created and the property a is set to the
float value 42. The next line creates a new object for the same abstract location
and adds the property a to the new object. This time the property value is a
string. To stay as close as possible to JSC our goal is to model binding of a value
to a variable by substitution.
Let us have a look at the semantics of JSC and how the program will eval-

uate in this calculus. The semantics of JSC yields after three evaluation steps
the expression let y = new in y.a := "flush" in ~0.a together with a heap that con-
tains an object {a : 42} at position 0. One evaluation step further we get
let y = ~1 in y.a := "flush" in ~0.a while the heap is [0 7→ {a : 42}, 1 7→ { }].
Suppose our semantics for JSR behaves similar. After one evaluation step we

get let x = (@l, 0) in x.a := 42; let y = newl in y.a := "flush"; x.a. The reference is
tagged by @ and l, because a new expression always creates a most recent object
for its abstract location.
Two steps later the heap is updated, and the resulting expression is

let y = newl in y.a := "flush" in (@l, 0).a. The summary heap is empty and
the most recent heap is [0 7→ {a : 42}]. One step later spontaneous guess would
lead to the expression let y = (@l, 1) in y.a := "flush" in (@l, 0).a and the most
recent heap [(l, 0) 7→ {a : 42}, (l, 1) 7→ {}]. But this breaks INVOH. To establish
INVOH the system moves the old l object into the summary heap. Hence, the
summary heap is [(l, 0) 7→ {a : 42}] and the most recent heap [(l, 1) 7→ { }]
contains the new object.
The problem caused by the movement is that the reference (@l, 0), which is part

of the expression, points to an object in the most recent heap that does not exist
after the movement. Therefore, the semantics for JSR has to adjust all references
when it moves objects from the most recent heap into the summary heap.
Our result after four evaluation steps should yield

1 let y = (@l, 1) in y.a := "flush";
2 (̃ l, 0).a

To model the movement from the most recent heap into the summary heap, and
to adjust the references, such that the system does not get stuck due to wrong
qualifiers, we introduce a new top level expression. We denominate the expression
demotion and write it \le. It moves the most recent object for the abstract location
l into the summary heap and adjusts all references inside of e, such that they point
to the appropriate summary heap object.
In JSR Program 4.2 is enriched with these demotions. This step can be done in
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Program 4.3 JSC – functions.

1 \l let x = newl in
2 let f = λ_.x.a in
3 x.a := 42;
4 \l let y = newl in
5 let z = f(0) in
6 z

a preprocessing step, hence the programmer does not need to write the demotions
down. The corresponding program is:

1 \l let x = newl in x.a := 42;
2 \l let y = newl in y.a := "flush";
3 x.a

Hence, the first rule that guides the preprocessing step is:

• If the right hand side of a let expression is a new expression, then the let
expression is surrounded by a demotion.

The parameter for the demotion is the abstract label of the new expression.

4.2.1.2 Functions

Consider Program 4.3, in which demotion expressions are inserted around each let,
which has a new expression as its right hand side.
The first line creates a new, recent l-object. Two evaluation steps later x is

substituted by the reference to the new object. Hence, the lambda expression
in the second line contains a precise reference in its body. Some evaluation steps
afterwards f is substituted by its closure, which contains the reference to the object
that was created in the first line. The evaluation yields:

\l let y = newl in
let z = (λ_.(@l,0).a)(0) in
z

The most recent heap is [(l, 0) 7→ {a : 42}] while the summary heap is empty.
However, before f is applied, line 4 creates another l-object. Hence, we need
demotion as in the first example (Program 4.2) to ensure the invariant INVOH.
The demotion expression adjusts all reference in its body. Hence, one step later

the expression is: let y = newl in let z = (λ_.(̃ l,0).a)(0) in z. If we model the de-
motion expression is such a way, typing of functions becomes arduous. Depending
on its use the function may access objects by exact references or by inexact ref-
erences. To avoid this we treat substitution into a function body special. If a
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variable is substituted by a precise reference, the reference is converted to a sum-
mary reference. Hence, free variables inside of function bodies will never be the
source of precise references.
If substitution demotes references inside of function bodies, the expression from

Program 4.3 yields after three evaluation steps:

let f = λ_.(̃ l,0).a in
(@l,0).a := 42;
\l let y = newl in
let z = f(0) in
z

Please note that the body of the lambda expression contains an imprecise ref-
erence, while in the next line the reference to the object is still precise. The most
recent heap after three evaluation steps is [(l, 0) 7→ {}]. The example executes
without getting stuck with the modified substitution. Later in the execution, if
the function f is executed in line 5, the demote expression from line 4 has already
moved the object from the most recent heap into the summary heap. Hence, the
property read inside of the function body is successful.
Let us now assume that line 3 of Program 4.3 is omitted. The execution also

puts the imprecise reference into the function body. But this time, because line 3 is
omitted, no demote expression will move the object (l, 0) into the summary heap,
and hence the execution of f gets stuck. The body of f tries to access an imprecise
object that is part of the most recent heap.
We can avoid the above problem by surrounding each function call with a demote

expression that ensures that each object that is accessed by the function using a
free variable is demoted before the function is called. The code of Program 4.3
then becomes:

1 \l let x = newl in
2 let f = λ_.x.a in
3 x.a := 42;
4 \l let y = newl in
5 \llet z = f(0) in
6 z

In this example the references and heaps stay in synchrony – independent from the
existence of line 4. Our static type system will ensure that the annotation that is
put at the demotion in line 5 is correct, and that the demote expression appears
in front of a function call. Type inference can compute the annotation set of the
demote expression, and our preprocessing step adds a demote expression in front
of each function call. So, no additional effort by the programmer is necessary.
Next, think of a function with multiple free variables, such that there is a need

to demote a set of objects instead of one object. To demote more than one object
we extend the syntax of demote \le to \Le for a set of locations L ⊆ Location.
The above example yields another rule for preprocessing:
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• If the right hand side of a let expression is a function call, the let expression
is surrounded by a demote expression.

The parameter for the demote expression is computed by type inference. The
inference ensures that all objects that may be passed to the function by a
free variable are demoted before the function is called.

Hint The special substitution does not imply that functions cannot work with
precise objects, since parameters can pass precise object references to functions.
Section 4.2.3.2 presents a formal definition of the substitution.

4.2.2 Syntax

Figure 4.7 states the formal syntax of JSR. A value is either udf, a reference
(q`, i) or a function recMf(y).e with a parameter y and a body e, where f is the
name under which the programmer can access the function itself for recursion.
Usually, we ignore the annotation M in the function expression because it is not
important for the first presentation of the calculus.1

A reference consists of a qualifier q that identifies the heap in which the object
is stored, an abstract location l and a natural number. The programmer is not
allowed to write down references in programs.
A top expression e is either a value, a let expression let x = s in e or a demote

expression \Le. let x = s in e first evaluates the expression s, binds its result to
the variable x and executes e with the new binding. The expression \Le demotes all
objects with references ` ∈ L; that means moving all objects with address (@`, i),
where ` ∈ L, from the most recent heap into the summary heap, and adjusting the
references from (@`, i) to (̃ `, i).
A simple expression s is either a variable, a value, a function application w(w),

a new expression, a property read w.a or a property write w.a :=w.
The new expression is tagged by an abstract location. If a new object is created

by a new expression the object is tagged by the corresponding abstract location
of the new expression, and all references to this object that arise during program
execution carry this abstract location with them.

Convention 4.2.3. The sets Location, Variable, Prop and N are pairwise disjoint.

4.2.3 Dynamic Semantics

The main difference between the semantics of JSC and JSR is the recency infor-
mation. The other parts are similar.

1JSR uses the special substitution to eliminate precise references of free variables. The anno-
tation stores the abstract location of all objects that have to be demoted before the function
is called. Section 4.5.5 proves lemmata that utilizes the annotation.
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Variable 3 x, y, f ::= x1 | x2 | . . .

Value 3 v ::= recM f(y).e | udf | (q`, i)

TopExpr 3 e ::= w | let x = s in e | \Le
Va(r|l) 3 w ::= x | v

SExpr 3 s ::= w | w(w) | new ` | w.a | w.a :=w
Qualifier 3 q ::= ˜ | @
Location 3 ` ::= l1 | l2 | . . .
Location ⊇ L,A,M (finite sets)

Prop 3 a
Expr 3 d ::= s | e

Figure 4.7: JSR – syntax. The differences between JSC and JSR are high-
lighted in gray. As in JSC, the programmer is not allowed to write down references
by himself. They only arise as intermediate values during evaluation. He also has
to ensure M = ∅ for function definitions, because M is an annotation filled during
evaluation.

Definition 4.2.4 (Configuration). A configuration (H,H0, d) contains a summary
heap H, a most recent heap H0, and an expression d. We also write (H, d) for the
configuration (H,H0, d) if H = (H,H0).

Figure 4.8 defines the small step operational semantics by induction. The rela-
tion −→ takes a configuration and yields a new one. The rules S-App, S-Let and
S-Let′ work like their counterparts in JSC, but they rely on a modified substitu-
tion d{x Z⇒ v} that takes care of demotion of references. Section 4.2.3.2 presents
the modified substitution formally.
The demote expression \Le (cf. S-Dem) rely on another auxiliary operation, the

demote operation ·\L, which is presented in Section 4.2.3.1. The demote expression
just applies the demote operation to the pair of heaps to move the appropriate
objects into the summary heap and to adjust references inside the heaps. It is
not necessary to modify qualifiers inside of the expression e, because substitution
already adjusts the modifier of references inside of e. Therefore, the rule returns
e↘ L, which is the expression e itself, except annotations. The auxiliary function
is defined in Figure 4.12.
The rule S-New creates a new object in the most recent heap and returns its

reference (@`, i). The side condition of the rule ensures that the most recent heap
does not contain a `-object, and that (`, i) is a fresh memory location. Hence, the
side condition ensures that INVOH and INVDH stay intact during evaluation.
The rule S-Rd and S-Wrt facilitates map lookup and map update, which are

defined in Figure 4.9 to perform property lookup or property update on objects.
The map lookup and map update auxiliary functions for references with qualifiers
decide depending on the qualifier with which heap they work.
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H ∈ Heap = Location× N fin−→ Object
H ∈ Heap× Heap

h ∈ Object = Prop
fin−→ Value

E ::= � | let x = s in E | \LE

S-Dem H, \Le −→ H\L, e↘ L

S-App H, (recf(x).e)(v) −→ H, e{f, x Z⇒ recf(x).e, v}
S-Let H, let x = v in e −→ H, e{x Z⇒ v}
S-New H,H0, new

` −→ H,H0{(`, i) 7→ {}}, (@`, i)
if dom(H0) ∩ ({`} × N) = ∅

and (`, i) /∈ dom(H)

S-Rd H, (q`, i).a −→ H,H(q`, i)$a

S-Wrt H, (q`, i).a := v −→ H{(q`, i)(a) 7→ v}, udf

S-Let′

H, s −→ H′, E [w]

H, let x = s in e′′ −→ H′, E [let x = w in e′′]

Figure 4.8: JSR – small-step operational semantics. Inductive. The rule S-Dem
uses the function e↘ L, which is defined in Figure 4.12. The function adjusts the
annotations of lambda expressions.

4.2.3.1 Demotion of References

The semantics of JSR uses the operation ·\L for expressions, top level expressions,
values and heaps. It adjusts the qualifier of a reference (q`, i) if q = @ and ` ∈ L.
Figure 4.10 defines demotion for variables and values, Figure 4.11 presents the

definition for expressions and top level expressions. Demotion for values adjusts
the qualifier of a reference from @ to ˜ if the abstract location of the reference
is element of the set L that is the parameter of the demote operation. Demotion
does not modify the body of a function, hence, (recf(x).e)\L is defined as recf(x).e,
because the modified substitution adjusts references inside of a lambda expression
(cf. Section 4.2.3.2).
For expressions demotion basically demotes all its values. One exception for this

rule is the demote expression itself. The demote expression \L′e takes care of all
references l ∈ L′, hence the demotion only continues with all l ∈ L− L′.
Demotion for heaps and property maps is defined pointwise.

H\L(`, i) := H(`, i)\L ∀(`, i) ∈ dom(H)
(h\L)$a := (h$a)\L ∀a ∈ dom(h)

Finally, the semantics applies demotion to a pair of heaps by first moving all L-
objects from the singleton heap H0 to the summary heap and then applying heap
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(H,H0)(q`, i) :=

{
H0(`, i) if q = @

H(`, i) if q = ˜

(H,H0){(q`, i) 7→ p} :=

{
H,H0{(`, i) 7→ p} if q = @

H{(`, i) 7→ p}, H0 if q = ˜

Figure 4.9: JSR – map lookup and map update for references. The figure
defines map lookup for a reference (q`, i) and a pair of heaps H,H0 and map
update for a reference (q`, i), a pair of heaps H,H0 and a property map p. These
definitions facilitate the notation of map lookup and map update (cf. Section 1.3)
(H,H0)(q, `i)

x\L := x

(recf(x).e)\L := recf(x).e

udf\L := udf

(q`, i)\L :=

{
(̃ `, i) if ` ∈ L
(q`, i) if ` /∈ L

Figure 4.10: JSR – demotion for variables and values.

demotion to both parts individually:

(H,H0)\L = (H ∪HL)\L, (H0\HL)\L

where HL = H0 ↓ {(`, i) | ` ∈ L, i ∈ N}

Demotion for a type environment Γ\L is defined pointwise.

(Γ\L)(x) = (Γ(x))\L ∀x ∈ dom(Γ)

We also define the shortcut ·\ := ·\Location such that if no location is given every
abstract location of the program is demoted.
Figure 4.12 defines the function e↘ L. It adjusts the annotation of rec expres-

sions. The purpose of the annotation from the rec expression is to keep track of
the set of abstract locations that need to be demoted before the function is called.
Every time we execute a demote operation, we adjust these set accordingly.

4.2.3.2 Substitution

Figure 4.13 defines the modified capture avoiding substitution d{x Z⇒ v} for JSR.
If demotion is the identity, the modified substitution is similar to a standard cap-
ture avoiding substitution. The difference is that the value is demoted by the
modified version if it is substituted into a demote expression or a rec expression
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Top level expressions: ·\L : TopExpr→ TopExpr

v\L := v\L

(let x = s in e)\L := let x = s\L in e\L

(\L
′
e)\L := \L

′
(e\(L−L

′))

Expressions: ·\L : SExpr→ SExpr

w\L := w\L

(w1(w2))\L := w\L1 (w\L2 )

(newl)\L := newl

(w.a)\L := w\L.a

(w1.a :=w2)\L := w\L1 .a :=w\L2

Figure 4.11: JSR – demotion for expressions and top level expressions.

If e =
(
let x = (recMf(x).ef )(w) in eb

)
, then

e↘ L := let x = (recM\Lf(x).ef )(w) in eb

otherwise

e↘ L := e

Figure 4.12: JSR – remove demote annotations.

(cf. the last three cases). If the expression is a demotion, then (\Le){x Z⇒ v}
demotes references inside of v with respect to L: \L(e{x Z⇒ v\L}). It ensures that
no precise references is able to break the demotion.

Section 4.2.1.2 explains with an example why it is necessary to prevent sub-
stitution of free variables by precise references. Substitution inside a function
body demotes the value v with respect to Location. As a consequence, no pre-
cise reference arises from the function body by free variables. The side condition
M ′ = M ∪ @Locs(v) is a technical detail that makes it simpler to prove the sub-
stitution lemma by keeping track of possible substitutions.
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y{x Z⇒ v} = y
x{x Z⇒ v} = v

udf{x Z⇒ v} = udf

(q`, i){x Z⇒ v} = (q`, i)
(w1(w2)){x Z⇒ v} = w1{x Z⇒ v}(w2{x Z⇒ v})

new`{x Z⇒ v} = new`

(w1.a){x Z⇒ v} = w1{x Z⇒ v}.a
(w1.a :=w2){x Z⇒ v} = w1{x Z⇒ v}.a :=(w2{x Z⇒ v})

(let x = s in e){x Z⇒ v} = let y = s{x Z⇒ v} in e
(let y = s in e){x Z⇒ v} = let y = s{x Z⇒ v} in (e{x Z⇒ v}) if y /∈ fv(v)

(\Le){x Z⇒ v} = \L(e{x Z⇒ v\L})
(recMf(z).e){x Z⇒ v} = recMf(z).e if x ∈ {z, f}
(recMf(z).e){x Z⇒ v} = recM

′
f(z).(e{x Z⇒ v\}) if x /∈ {z, f}

and {z, f} ∩ fv(v) = ∅
for M ′ = M ∪@Locs(v)

d{x, y Z⇒ vx, vy} = (d{x Z⇒ vx}){y Z⇒ vy} if y /∈ fv(vx)

Figure 4.13: JSR – modified substitution. The figure defines the capture avoid-
ing substitution inductively. The definition assumes that x 6= y.

4.2.4 Invariants of JSR

Lemma 4.2.5 (Context for top expression). For all top expressions e, there exists
one evaluation context E and a variable or value w, such that E [w] = e.

Proof by contradiction. Assume there exists at least one top expressions e such
that there exits no E [w] with E [w] = e. Let e be the expression from this set
with the smallest height. This expression exists, if the set is not empty, since our
expressions all have a finite height.
Either e is a let expression, a demote expression, or a variable, or a value. The

last two cases are not possible, since for E = � holds E [w] = e.
Use the same ideas as in Lemma 4.1.4 to prove that the case where e is a let

expression is not possible. The same argument is applicable for demote expressions.

Lemma 4.2.6 (Context existence). For heaps H,H′, a simple expression s and a
top expression e, if H, s −→ H′, e, then there exists one evaluation context E and
a value or variable w, such that E [w] = e.

Proof. Analogous to Lemma 4.1.5. The only difference is that we apply
Lemma 4.2.5 instead of Lemma 4.1.4.

Definition 4.2.7 (Closedness). A value v (or expression d) is closed, if fv(v) = ∅
(fv(d) = ∅).
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Lemma 4.2.8. For an expression d it holds that for all variables x

fv(d{x Z⇒ v}) ⊆ (fv(d)− {x}) ∪ fv(v)

Proof. Analogous to Lemma 4.1.3 by induction over the definition of the substitu-
tion function.

Lemma 4.2.9. For an expression d with fv(d) = {x} and a closed v, d{x Z⇒ v}
is closed.
For an expression d with fv(d) = {x, f} and closed v and d′, d{x, f Z⇒ v, d′} is

closed.

Proof. Direct consequence of Lemma 4.2.8.

Lemma 4.2.10 (Closedness). For a configuration C with a closed expression d, if
C −→ C ′, then d′ is closed.

Proof by induction over −→. We make a case distinction and apply Lemma 4.2.9.

Next, we restate here the two invariants INVOH and INVDH formally and prove
some lemmata, basically stating that they are valid for each program we are inter-
ested in.

Definition 4.2.11 (INVOH). For H = (H,H0), INVOH(H) holds, if ∀` ∈
dom(H0)↓1 : ∃≤1i : (`, i) ∈ dom(H0).
INVOH(C) holds for a configuration C = (H,H0, d), if INVOH(H,H0) holds.

Lemma 4.2.12. INVOH(∅, ∅, d) holds.

Proof. Trivial since the most recent heap is empty.

Lemma 4.2.13 (INVOH). If INVOH(C), and C −→ C ′, then INVOH(C ′).

Proof by induction over −→. The only two relevant rules are S-Dem and S-New.

• Case S-Dem: By the definition of H\L, from INVOH(H) follows that
INVOH(H\L) holds. Therefore, the case S-Dem is proved.

• Case S-New: The object creation case is trivial due to the conditions of the
rule S-New.

Definition 4.2.14 (−→∗). As usual let −→∗ be the transitive reflexive closure of
−→.

Corollary 4.2.15 (INVOH). For all C with (∅, ∅, d) −→∗ C it holds INVOH(C).

Proof by induction over the length of the derivation. In the different cases apply
Lemma 4.2.12 and Lemma 4.2.13.
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Definition 4.2.16 (INVDH). INVDH(C) for C = (H,H0, d) holds, if dom(H) ∩
dom(H0) = ∅.

Lemma 4.2.17. INVDH(∅, ∅, d) holds.

Proof. Trivial, because the two heaps have an empty domain.

Lemma 4.2.18. If INVDH(C), and C −→ C ′, then INVDH(C ′).

Proof by induction over −→. Only the rule S-Dem and S-New changes the do-
mains of the heaps. Hence, for all other rules the claim is immediate or holds by
induction.

• Case S-Dem: The definition of demotion for a pair of heaps just moves
objects from the most recent heap into the summary heap (beside adjusting
references).

• Case S-New: The side condition of the new rule ensures that the reference
of the newly created object is not already part of the domain of the summary
heap.

Corollary 4.2.19 (INVDH). For all C with (∅, ∅, d) −→∗ C it holds INVDH(C).

Proof. Lemma 4.2.17, Lemma 4.2.18

Definition 4.2.20 (INVH). INVH(C) holds, if INVOH(C) and INVDH(C).

Corollary 4.2.21 (INVH). For all C with (∅, ∅, d) −→∗ C it holds INVH(C).

Proof. Corollary 4.2.15, Corollary 4.2.19

4.3 Connection between JSC and JSR
This section presents a proof that the only difference between JSC and JSR lies
in the recency information. This statement is formulated for expressions and heaps
modulo memory allocation (cf. Definition 4.1.7). We omit the corresponding defi-
nition for expressions and heaps in JSR because it is analogous to the definition
presented in Figure 4.6.
To make it easier to distinguish between expressions from JSC and JSR we

use in this section the metavariable f to indicate expression are from JSR, while
e indicates that we are dealing with expressions from JSC.
In this section we prove a simulation result, starting from an expression f ∈
JSR, and show that for an equivalent expression e ∈ JSC, e and f evaluate
in a similar manner. Roughly spoken (for example omitting the heaps), we state
that for expressions e ∈ JSC and f ∈ JSR with e ∼ f (e is equivalent to f), if
f −→∗ f ′, there exists an e′, such that e→∗0 e′ and e′ ∼ f ′. The relation ∼ relates

47
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expressions from JSC to those from JSR, such that their structure is similar.
Hence, the theorem allows to transform the safety properties from JSR to JSC.
The result is formally stated in the Theorem 4.3.5.

Definition 4.3.1 (JSC-JSR Equivalence). An expression e ∈ JSC is equivalent
to an expression f ∈ JSR, if e ∼ f holds. It is defined as:

x ∼ x udf ∼ udf ~i ∼ (q`, i)
e ∼ f

recg(x).e ∼ recMg(x).f

s ∼ s′ e ∼ f
let x = s in e ∼ let x = s′ in f

e ∼ f
e ∼ \Lf

v1 ∼ v′1 v2 ∼ v′2
v1(v2) ∼ v′1(v′2)

v ∼ v′

v.a ∼ v′.a
v1 ∼ v′1 v2 ∼ v′2
v1.a := v2 ∼ v′1.a := v′2

A JSC heap and a tuple of JSR heaps are equivalent, iff

dom(H) = (dom(H ′) ∪ dom(H ′0))↓2
dom(H ′) ∩ dom(H ′0) = ∅ ∀i ∈ dom(H) : ∃=1` : H(i) ∼ (H ′, H ′0)(`, i)

H ∼ H ′, H ′0
Lemma 4.3.2. For all e ∈ JSC and f ∈ JSR with e ∼ f , it holds

e ∼ f \L (4.1)

for all L.

Proof by induction over the structure of e.

• Case e = x, e = udf, e =~i: trivial.

• Case else: Immediate by induction.

Lemma 4.3.3 (JSC-JSR substitution). For all e, v ∈ JSC, f, v′ ∈ JSR and
for all L, with e ∼ f and v ∼ v′ it holds:

e[x 7→ v] ∼ f{x Z⇒ v′\L}

Proof by induction over the shape of f .

• Case f = udf, f = (q`, i), f = new`: The substitution does not affect f ,
such that f{x Z⇒ v′} = f . Inversion of ∼ yields also e[x 7→ v] = e.

• Case f = y: If y 6= x, then substitution does not change f . Let us assume
y = x, then f{x Z⇒ v′\L} = v′\L. Inversion of the definition of ∼ yields for e:
e = y. Hence, e[x 7→ v] = v. Because of v ∼ v′, it holds for all L: v ∼ v′\L

and e[x 7→ v] ∼ f{x Z⇒ v′\L}.
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• Case f = let y = s′ in fb: Inversion of ∼ yields for e: e = let y = s in eb.
There are two cases, either x = y, or x 6= y.

– Case x 6= y: Then

f{x Z⇒ v′\L} = let y = s{x Z⇒ v′\L} in fb{x Z⇒ v′\L} (4.2)

For e it holds:

e[x 7→ v] = let y = s[x 7→ v] in eb[x 7→ v] (4.3)

By induction it holds for all L′′:

s[x 7→ v] ∼ s{x Z⇒ v′\L
′′} (4.4)

eb[x 7→ v] ∼ fb{x Z⇒ v′\L
′′} (4.5)

Hence, the definition of ∼ for let expressions yields the desired result.

– Case x = y: The case x = y is analogues, but fb and eb are not affected
by the substitution.

• Case f = \Lfb:

Inversion of ∼ yields e = \Leb. Induction yields eb[x 7→ v] ∼ fb{x Z⇒ v′\L
′}

for all L′′.

This implies that eb[x 7→ v] ∼ fb{x Z⇒ v′\L
′∪L} for all L′. We can always

choose an L′′, such that L′′ = L′ ∪ L.
Hence, e[x 7→ v] ∼ (\Lfb){x Z⇒ v′\L

′} = f{x Z⇒ v′\L} for all L′.

• Case f = (v1)v2, f = v.a, f = v1.a := v2: These cases are straightforward
by induction on v or v1 and v2.

Lemma 4.3.4. For all heaps H ∈ JSC and H ∈ JSR with H ∼ H it holds

H ∼ H\L

for all L.

Proof. Immediate by Lemma 4.3.3.

Theorem 4.3.5 (JSR to JSC simulation). For all e ∈ JSC and f, f ′ ∈ JSR,
with e ∼ f , H ∼ H and H, f −→∗ H′, f ′ there exists e′ and H ′, such that

H, e→∗0 H ′, e′ and e′ ∼ f ′ and H ′ ∼ H′

Proof by induction of −→∗.

• Case S-Dem: Immediate because −→∗ is reflexive and due to Lemma 4.3.4.
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Typec 3 t ::= obj(p) | (∆, t) L,A−→ (∆, t) | > | udf
Reference 3 p ::= ˜L | @{`} with |L| ≥ 1, L finite
HeapType 3 r ::= ∅ | r[a : t]

SummaryEnv 3 Σ ::= ∅ | Σ(` : r)
SingletonEnv 3 ∆ ::= ∅ | ∆(` : r)

TypeEnv 3 Γ ::= ∅ | Γ(x : t)

Figure 4.14: JSR – type syntax. Co-inductive.

• Case S-App, S-Let: By induction and Lemma 4.3.3.

• Case S-New, S-Rd, S-Wrt: Immediate.

• Case S-Let′: By induction.

4.4 Static Semantics of JSR
In this section we present the formal syntax of our static type system in Sec-
tion 4.4.1. Object types and function types are special in JSR compared to other
type systems [100]. Thus we show how they behave with some examples. We con-
tinue by presenting the subtyping relation of the calculus in Section 4.4.2. Another
important relation of JSR is the flow relation (Section 4.4.3), which models the
movement between the most recent heap and the summary heap. It ensures that
the static semantics stays synchronized with its dynamic counterpart. Because the
dynamic semantic demotes references, we define an analogous operation on types in
Section 4.4.4. After introducing these relations and functions on types, we present
the type rules for values except functions (Section 4.4.5), expressions and top ex-
pressions (Section 4.4.6). Because the typing rule for functions is complicated, we
present it in Section 4.4.7. The typing rules utilize additional relations, which we
introduce afterwards in Section 4.4.8.

4.4.1 Syntax

In Figure 4.14 we define the syntax of types co-inductively. A type is either an ob-
ject type obj(p), a function type (∆, t)

L,A−→ (∆, t), the top type > or the singleton
type udf.
In the object type, p refers to a set of heap types through an environment, either

using the summary environment (Σ) if p = ˜L or a singleton environment (∆) if
p = @{`}. Hence, the object type itself does not provide complete information
about the shape of the object. For this purpose, a heap type r is used additionally.
A heap type is a finite mapping from properties to types describing the shape
of an object. Section 4.4.1.1 explains object types in more detail. To make the
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environments more readable we omit the ∅ entry at the beginning if there are
bindings for an environment.
A function type (∆1, t1)

L,A−→ (∆2, t2) contains a lot of information. Of course
it has to state what is the type of the parameter (t1) and return value (t2). It
also specifies the structure of the most recent heap before invocation (∆1), and
how the structure will look after execution (∆2). The two sets over the arrow
of the function type L and A are effects of the function. The first effect collects
all locations, for which the function may create new objects, and the second one
collects all locations which the function may access (read or write). Section 4.4.1.2
contains a detailed description and motivation for these choices.
Our static type system has a flow-sensitive, and a flow-insensitive part. We treat

most recent objects flow-sensitively, while we treat old objects flow-insensitively.
The nature of the treatment of most recent objects and summary objects impairs
the treatment of the most recent environment and the summary environment.
Our flow sensitive type system uses the judgment

Σ,∆,Γ `te e : t⇒ L,A,∆,Γ

to type top expressions, the judgment

Σ,∆,Γ `s s : t⇒ L,A,∆

to type expressions and the judgment

Σ,Γ `w w : t

to type values and variables. Each of the three judgments relate their syntactic
entity (top expression, expression, value or variable) to a suitable type.
The type judgment for top expressions depends on three environments, the sum-

mary environment Σ, the singleton environment ∆ and the type environment Γ.
Because we treat most recent objects flow-sensitively, the judgment returns a new
singleton environment. The type environment is treated flow-sensitively, too, be-
cause a demote expression may change the type of variables. The summary en-
vironment is not treated flow-sensitively and therefore it is not returned by the
judgment. The judgment also computes two effects. L is the allocation effect and
A is the access effect. We explain the effects in more detail in Section 4.4.1.2.
Because types of variables only change in our calculus due to the demote expres-

sion, which is a top expression, the type judgment for expressions only returns a
modified singleton environment along with the two effects.
Variables and values do not change the state of objects or the type of variables.

Hence, the judgments for types and variables do not return any environment. It
just relates the variable or value to a suitable type.
To establish some basic properties, such that for an abstract location only one

binding exists in an environment, well-formedness for types and environment is
defined in Figure 4.15. From now on, if we are talking about types and environ-
ments, we always assume implicitly that they are well-formedness. Additionally,
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WfTop
`wf >

WfUndef
`wf udf

WfObj
`wf obj(p)

WfFunction
`wf ∆1 `wf ∆2 `wf t1 `wf t2

`wf (∆1, t1)
L,A−→ (∆2, t2)

WfEmptySet
`wf ∅

WfObject
`wf r `wf t a /∈ dom(r) dom(r) finite

`wf r[a : t]

WfMostRecentHeap
`wf ∆ `wf r ` /∈ dom(∆) dom(Σ) finite

`wf ∆(` : r)

WfSummaryHeap
`wf Σ `wf r ` /∈ dom(Σ) dom(∆) finite

`wf Σ(` : r)

WfTypeEnvironment
`wf Γ `wf t x /∈ dom(Γ) dom(Γ) finite

`wf Γ(x : t)

Figure 4.15: JSR – well-formedness of types and environments. We interpret
the rules for the well-formedness relation co-inductively. Otherwise the relation
filters all infinite types out. The relation restricts environments to finite maps
that contains at most one binding per key.

we restrict ourself to regular types, which is a usual practice when working with co-
inductively defined mathematical entities [100]. Please note that well-formedness
environments have a finite number of entries.

Convention 4.4.1. From now on we assume that all syntactic entities from Fig-
ure 4.14 are well-formed (cf. Figure 4.15).

4.4.1.1 Object Types

To get familiar with the type system and the type syntax of JSR we take a look at
some simple examples that use objects. Please first consider Program 4.4. In the

Program 4.4 JSC – object initialization.

1 let x = newl in
2 x.a := 42;
3 x.name := "Meyer";
4 x.a
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Program 4.5 JSC – alias.

1 let x = newl in
2 let y = x in
3 y.a := 42;
4 x.a

first line a new object is created. The variable x holds a reference to this object.
In the next two lines two new properties are added to the object. The property
name is set to the value "Meyer" while a is set to the float value 42. The last line
of the example returns the float value 42 as the value of the whole expression.
The type of the variable x is in all lines of the program fragment obj(@`). As

the type judgment for expressions treat the most recent environment flow-sensitive,
the environment reflects the state of the most recent heap exactly in this example.
Before the first line is executed the most recent heap environment is empty. The
judgment that types the new expression returns the most recent environment (` :
∅). The assignment in line 2 then takes this most recent environment and adjusts
it, as the semantics adjusts the heap content and returns (` : [a : float]).2 Next,
it adjusts the shape another time to (` : [a : float][name : string]). Therefore,
the flow-sensitive part of the type system is capable of returning the type float

for the expression x.a.
One interesting question arises when a program introduces aliases. Consider

Program 4.5. In the first line a new empty object is created. In the next line
an alias is created (y). For a type system it is hard to deal with aliases, and
the question is, what happens in the next two lines. In line 3 the object gets a
new property a with the value 42. The last line reads the property a of object x.
Because x and y are aliased the property read returns 42.
The type system relates the variable x to the type obj(@`). The new expression

induces – as in the first example – an entry into the most recent heap for the
abstract location `. The most recent environment is (` : ∅) at beginning of line 2.
Hence, the variable y gets the type obj(@`). In line 3 the type judgment adjusts
the most recent environment to (` : [a : float]). Because of the indirection for
object types, the type system is aware of the aliases x and y and the property read
in line 4 returns float.

4.4.1.2 Function Types

As already explained in Section 4.2.1.2 at Program 4.3, functions, in some way,
may enforce the caller to clean the most recent heap, before the function is invoked.
The reason why this is necessary is that it is hairy to allow functions working with
most recent objects using free variables.

2We assume here the presens of a base type float and string for the example.
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Program 4.6 JSC – calling function with allocation twice.

1 let f = λ().
2 \l1 let x = newl1 in
3 x
4 in
5 let x1 = f(udf) in
6 // do something with x1, that changes the shape of x1
7 let x2 = f(udf) in
8 // do something with x2, that changes the shape of x2
9 let x3 = f(udf) in
10 ...

Additionally, a function may enforce the caller to free the heap before function
invocation appropriate. Therefore, the type of a function heavily depends on the
structure of the heap. It is obvious that a function needs the structure of all objects
that the body may access in some sense (e.g. read, write or allocate). Consider
Program 4.6. Even if the function f at first demotes the l1 object in order to make
space for the new l1 object that is created by the new expression afterward, the
function depends on the shape of the l1 object stored in the most recent heap
before invocation. In our example the function type may be

(∆,>)
L,A−→ ((l1 : ∅), obj(@l1)) (4.6)

for some most recent heap environment ∆ and effect L and A. We will first ignore
the access effect A. It is explained in Section 4.4.1.3.
The problem with the example is now that the invocation of f in line 9 is not

typeable, since the most recent heap contains an l1 object with another shape as
the l1 object in the most recent heap in line 7.3

A solution for this problem is that the function enforces the caller to clean the
most recent heap with respect to l1, before the invocation happens. Then, the
function itself does not enforce any restrictions on the structure of the most recent
heap for l1 objects, except that there must be a free place for a new l1 object the
function creates. Therefore, the allocation effect is used to express that a function
requires a clean heap for all abstract locations that are part of the effect. Hence,
the type of the function is:

(∅,>)
{l1},A−→ ((l1 : ∅), obj(@l1))

This type is more flexible than the type from (4.6). The logical type system will
support both types for the function.

3In the type system, we will be able to always find a local environment ∆ describing both
objects, but the resulting ∆ may be really complicated and ugly, and the worst thing is, that
we will lose a lot of information about the structure of the objects, even if this is not necessary.
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Program 4.7 JSC – calling function in different context.

1 let f = λ(x).
2 // body of f omitted.
3 in
4 let x = newl1 in
5 f(x);
6 let z = newl2 in
7 f(x)

4.4.1.3 Access Effect

Until now, our intuition of the most recent environment is that the type system
establishes a one-to-one relation between objects in the most recent heap and
entries in the most recent environment. Hence, we assume that

l ∈ dom(∆)←→ ∃!i : (l, i) ∈ dom(H0) (4.7)

holds for a most recent environment ∆ and a suitable most recent heap H0; that
is, if the most recent heap contains an l-object, the most recent heap environment
contains an entry for this object, and vice versa. A property like that helps a lot
for proving soundness.
A problem with (4.7) is that the type of a function, which contains a most recent

environment, has to describe the structure of everything in the most recent heap.
Consider Program 4.7 for an example. The first three lines create a function f
that takes an object as a parameter and does something with it. Since it is not
important what happens inside of f, the function body is omitted in the example.
The function is called at two places in the example. The first call is in line 5,
the second in line 7. A problem pops up, because in line 6 a new object at
abstract location l2 is created. Typing function f requires the same most recent
heap environment at each call site. Since in line 5 the most recent heap environment
is ∆5 = (l1 : ∅), a possible typing of f, which allows the function call in line 5, is

tf = ((l1 : ∅), t) L,A−→ ((l1 : ∅), t′) (4.8)

for some types t, t′ under the assumption that f does not create new objects. But
now have a look at line 7. Here the most recent heap is ∆7 = (l1 : o1)(l2 : ∅) for a
suitable property map o1. It is easy to see that the most recent heap environments
∆5 and ∆7 discern in the existence of the object at abstract location l2.
We make the function type polymorphic in the part of the most recent heap

that is not used by the function body. To achieve the independency we compute
an upper bound of abstract locations that are accessed by the function body. We
call this upper bound access effect and propagate it in the type system bottom up
to the lambda expressions. A type of a function then has the form

(∆, t)
L,A−→ (∆, t) , (4.9)
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ST-Refl
t <: t

ST-Top
t <:>

ST-Obj
L ⊆ L′

obj(qL)<: obj(qL′)

ST-Fun
t1 <: t′1 t′2 <: t2 L ⊆ L′ A ⊆ A′

(∆2, t2)
L,A−→ (∆1, t1)<: (∆2, t

′
2)

L′,A′−→ (∆1, t
′
1)

Figure 4.16: JSR – subtyping. We interpret the subtyping rules co-inductively
to establish the subtype relation between types of infinite height.

where A is the access effect of the function. Typing a function call is now possible
for all most recent environments ∆′ by weakening the condition ∆ = ∆′ to

∀l ∈ A : ∆′(l) = ∆(l) . (4.10)

Of course this means that the equivalence from (4.7) is not valid any more, and
we can only state that the direction from left to right will hold. We will prove it
later in the preservation lemma. It is part of the formulation that the consistency
between the most recent heap description and the actual heap is invariant with
respect to the semantics.
Allowing the splitting of the most recent heap into two parts is similar to the

frame rule used in separation logic [92, 106]. Access effects are a possible way
to decide, which part stays unchanged, and which part is passed to the function.
Access effect may be seen as some kind of lower bound of the domain of the most
recent heap. It is never allowed to split entries with an abstract location away from
the most recent heap if the abstract location is part of the access effect. Similarly,
the allocation effect may be seen as some kind of negative restriction on the domain
of the most recent heap. The type system ensures that for all abstract locations `
that are in the allocation effect the most recent heap never contains an entry for
such an abstract location. Additionally, if a function gets L as its allocation effect,
function application never splits objects with abstract location ` ∈ L away. See
Section 4.5.3 for more details.

4.4.2 Subtyping

Subtype polymorphism is a feature that most object oriented programming lan-
guages support [100]. Figure 4.16 introduces the subtype relation t1 <: t2 for JSR
by co-induction. To no surprise the relation is reflexive and transitive as usual (cf.
Lemma 4.5.6). The rule ST-Top makes > the supertype of all types. The rule
ST-Obj defines the subtyping between object types. A simple example for two
object types that are in subtype relation to each other is:

obj(̃ {`1}) <: obj(̃ {`1, `2}) (4.11)
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Flow-Env
∀` ∈ L : L `h ∆(`)C Σ(`) ∆′ = ∆\L ↑ L Σ = Σ\L

Σ,∆BL ∆′

Flow-ObjRef
` ∈ L ` ∈ L′

L `t obj(@{`})C obj(̃ L′)

Flow-Sub
t <: t′

L `t tC t′

Flow-Obj
(∀a ∈ Prop) L `t r(a)C r′(a)

L `h r C r′

Figure 4.17: JSR – flow. We interpret the flow relation inductively, because the
subtype relation already relates types of infinite height.

As the example (4.11) shows, object types with multiple abstract locations are
in subtype relation to each other, if they have the same qualifier and if the more
general type has a larger set of abstract locations than the more specific type. A
consequence of the rule ST-Obj is that our calculus supports union types over
summary objects. Because the set L for most recent objects is limited to one
element, the calculus does not support union types over most recent objects. In
Chapter 6 we discuss an extension of JSR that supports union types over most
recent objects.
The subtype relation treats function arguments contravariant and its return type

covariant as usual. It additionally relates the effects of the two function types such
that the more general type may have larger effects.

4.4.3 Flow

The flow judgment Σ,∆ BL ∆′ is a relation modeling the movement from most
recent objects into the summary heap. It takes the two heap environments Σ,∆,
a set of abstract locations L and yields a new most recent heap environment ∆′.
It ensures that in the summary heap environment there are no objects pointing

to precise ` objects for ` ∈ L by the condition Σ = Σ\L. To compute the new most
recent heap environment ∆′, we have to demote all types inside of ∆ with L, and
remove all ` ∈ L from ∆.
One way to get two types in flow relation is to establish the subtype relation

between them. But to be more precise, it is not necessary that the two types are
in subtype relation to each other before the objects are moved into the summary
heap, but they need to be in subtype relation afterward.
Hence, we would like to support roughly the following implication

Σ,∆BL ∆′ → (∀l, a : ∆(l)(a)\L <: Σ(l)(a)) (4.12)

Instead of using the implication (4.12) as a defining property, we choose a con-
structive approach for the definition of the flow relation and prove that it fulfills
the desired property. The benefit of a constructive approach is that the implemen-
tation of the flow relation is simple.
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The following example demonstrates that care must be taken by defining the
relation. Suppose

Σ = (`1 : [a : string][o : obj(̃ `3)])(`2 : ∅)(`3 : ∅)

and
∆ = (`1 : [a : string][o : obj(@`3)])(`2 : [b : int])(`3 : ∅)

In this example the flow relation allows the movement of the `1 object, if it is moved
together with the `3 object. Moving the object with abstract location `1 without
the `3 object is forbidden because afterward the `1 object in the summary heap
will have a precise pointer to the `3 object. This is not allowed since Σ(`1)(o) =
obj(̃ `3), which is not in subtype relation with obj(@`3). Moving `1 and `3 together
will relax the constraint of the `3 object, since then it holds L `t obj(@`3) C
obj(̃ `3) for any L with `3 ∈ L.
Of course it is also allowed to move just the `3 object since it does not have any

properties in both heap environments.
The movement of `2 is not supported, since the program may read the property

of an aged `2 object. And since map lookup ∅$b returns udf, storing an integer in
the property b would break soundness.

Lemma 4.4.2. The inductive and co-inductive interpretation of the rules in Fig-
ure 4.17 are equivalent.

Proof. The lemma holds because the domain of heaps and property maps are
finite.

Inductive interpretation of the rules is sufficient because the flow relation does
relate function types to each other in the same way as subtyping does. This is due
to the fact that demotion does not effect function values and function types.

4.4.4 Demotion of Types and Environments

Figure 4.18 defines the recursive total function ·\L : t → t over types. Demotion
of udf and > is the identity. The interesting case is to demote precise objects.
We change from obj(@`) to obj(̃ {`}) if ` ∈ L. The demote operation on function
types is also the identity, since the demote operation on function values is the
identity, too. The demote operation naturally expands pointwise to environments.
The intuition behind the demotion on type level is that the following should

hold:
Σ,Γ `w w : t implies Σ,Γ\L `w w\L : t\L

for all L. The presented definition is sufficient to establish this. The implication
is proven in Lemma 4.5.11.
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udf\L := udf

>\L := >
obj(̃ L′)\L := obj(̃ L′)

obj(@{`})\L :=

{
obj(̃ {`}) if ` ∈ L
obj(@{`}) if ` /∈ L(

(∆1, t1)
L′,A−→ (∆2, t2)

)\L
:= (∆1, t1)

L′,A−→ (∆2, t2)

∅\L := ∅
(r[a : τ ])\L := r\L[a : τ \L]

(∆(` : r))\L := ∆\L(` : r\L)
(Γ(x : τ))\L := Γ\L(x : τ \L)

Figure 4.18: JSR – demotion of types and environments. We define the function
to demote types and environments recursively. A co-recursive interpretation is not
necessary because there is no recursive call for function types.

T-Undefined
Σ,Γ `w udf : udf

T-Object
Σ,Γ `w (q`, i) : obj(q`)

T-Variable
Γ(x) = t

Σ,Γ `w x : t

T-Function
→ Figure 4.22

Figure 4.19: JSR – typing rules for values and variables. Inductive definition
of the type judgment for values and variables. Consider Figure 4.22 for the type
rule for functions.
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4.4.5 Typing of Values and Variables

Figure 4.19 contains the inductive definition of the typing judgment `w. The
relation has the form Σ,Γ `w v : t. Under the summary heap environment Σ and
the type environment Γ the value v or the variable x has type t.
The rule T-Undefined types the value udf with type udf without restricting

the environments Γ,Σ in any way. The rule T-Object types object references
without looking them up in the most recent/summary heap. It assigns the type
obj(q`) to an object that has a reference of the form (q`, i) for an arbitrary i. The
rule T-Variable looks up the type of the variable in the type environment Γ.
Before explaining the type rule for function values (T-Function), we will ex-

plain the typing rules for expressions. This makes sense, since the body of a
function value is an expression, which is typed during typing the function value
itself. Please consider Section 4.4.7 for the explanation of the rule T-Function
and have a look at Figure 4.22 for the rule itself. Section 4.4.1.2 contains an
introduction to function types.

4.4.6 Typing of Expressions and Top Expressions

The relation `s types simple expressions, the relation `te types top expressions.
Figure 4.20 defines `s and Figure 4.21 presents the definition of `te. Both,
Σ,∆,Γ `s s : t ⇒ L,A,∆′ and Σ,∆,Γ `te e : t ⇒ L,A,∆′,Γ′ relate an (top)
expression s (e) to a type t under a type environment Γ, a global heap environ-
ment Σ and a local heap environment ∆. The type relation also produces two
effects L and A. The first is the allocation effect, basically collecting the set of all
abstract locations, for which the expression may create new objects. The second
is the access effect, which collects all abstract locations, for which the expression
may access the most recent heap. Both relations produce a new most recent heap
environment ∆, because both of them can modify the most recent heap (e.g. by
performing function calls or creating new objects). The relation `te also produces
a new type environment Γ′. Hence, typing of variables and most recent objects is
flow sensitive.
Inside of an expression s there is no possibility to directly change the type of a

variable. Only the demote expression can change types of variables, and since it is
a top level expression, `s does not need to handle type of variables flow sensitive.
Therefore, the judgment does not return a modified type environment.

4.4.6.1 Expressions

The rule T-Function Call in Figure 4.20 types function calls. The condition
∆,Γ `c L cleans the most recent heap for all objects with an abstract location
` ∈ L. The condition ∆, A `S ∆1,∆2 splits the most recent heap ∆ into two
parts ∆1 and ∆2. The access effect is used to decide, which objects are put into
which heap. The most recent heap description ∆1 contains all object with an
abstract location ` with ` ∈ A. ∆2 contains all other objects. The condition
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T-Value
Σ,Γ `w w : t t <: t′

Σ,∆,Γ `s w : t′ ⇒ ∅, ∅,∆

T-Function Call
∆,Γ `c L ∆, A `S ∆1,∆2

∆′, A `S ∆′1,∆2 Σ,Γ `w w2 : t2 Σ,Γ `w w1 : (∆1, t2)
L,A−→ (∆′1, t1)

Σ,∆,Γ `s w1(w2) : t1 ⇒ L,A,∆′

T-New
∆,Γ `c {`} ` ∈ dom(Σ)

Σ,∆,Γ `s new` : obj(@`)⇒ {`}, ∅,∆(` 7→ {})

T-Read
Σ,Γ `w w : obj(p) Σ,∆ `r p.a : t A `a p

Σ,∆,Γ `s w.a : t⇒ ∅, A,∆

T-Write
Σ,Γ `w w : obj(p) Σ,Γ `w w′ : t′ Σ,∆ `w p.a := t′ ⇒ ∆′ A `a p

Σ,∆,Γ `s w.a :=w′ : udf⇒ ∅, A,∆′

Figure 4.20: JSR – typing rules for simple expressions (`s). Inductive definition
of the type judgement for simple expressions.
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∆′, A `S ∆′1,∆2 then later merges the two heap ∆2 and the heap ∆′1, which
is returned by the function together to a most recent heap description ∆′. The
idea behind the splitting is that this allows the function call without passing the
complete most recent heap description. Hence, the function is polymorphic in the
part of the most recent heap that is not used inside of the function. The two
conditions Σ,Γ `w w2 : t2 and Σ,Γ `w w1 : (∆1, t2)

L,A−→ (∆′1, t1) do the usual
check of parameter and function value.
The rule T-New types the new expression. The expression new` gets type

obj(@`), and the most recent heap environment returned by the type rule contains
a new empty object at abstract location `. The condition ∆,Γ `c {`} ensures that
the most recent heap ∆ is empty for the corresponding abstract location, while
` ∈ dom(Σ) enforces that there exists a summary heap description for objects of
abstract location `. The allocation effect is {`} and the access effect is empty.
The expression w.a is correctly typed, if the value w has an object type obj(p)

and if the property lookup in the static heap environment yields a type t. This
lookup is outsourced to the relation `r; consider Section 4.4.8 for the definition.
The condition A `a p ensures that the access effect of the type rule T-Read
contains all abstract locations, for which the reading may be performed. The
allocation effect is empty, because reading a property does not create a new object
in the heap. The two environments Γ and ∆ stay unchanged.
The rule T-Write types the two values w and w′ using `w, such that obj(p)

is the type of the left hand side (without the label), while t′ is the type of the
right hand side of the assignment. The condition Σ,∆ `w p.a := t′ ⇒ ∆′ uses the
relation `w to ensure that the write operation is reflected correctly either in the
most recent heap environment, or that the write operation is allowed with respect
to the global heap environment. Which one is necessary depends on the precession
of the object, which is reflected in the pointer reference p. Both cases are handled
by `w. Since an assignment may change the type of the corresponding object,
if p is a precise reference type, the relation `w returns a modified most recent
heap environment ∆′. Therefore, the type rule T-Write returns ∆′ to reflect the
possible type change. If p is an imprecise reference type, it holds ∆ = ∆′. Like
in the rule for reading properties, the condition A `a p ensures the correct effect
calculation. The allocation effect L is empty, since writing a property does not
create new objects in the heap. The type environment Γ stays unchanged.

4.4.6.2 Top Expressions

Figure 4.21 contains the typing rules of the top expressions. Since each value is
also an expression, the rule T-Value deals with the values by using `w to type
the value. Of course a value does not have any effects, nor does it change the flow
sensitive parts of the type judgment.
The rule T-Demote type the demotion expression. It ensures that the move-

ment of all objects with abstract location ` ∈ L is possible with respect to the
type environments with the condition Σ,∆BL ∆′. The rule also enforces that the
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T-Value
Σ,Γ `w w : t t <: t′

Σ,∆,Γ `te w : t′ ⇒ ∅, ∅,∆,Γ

T-Demote
Σ,∆BL ∆′

Σ,∆′,Γ\L `te e : t⇒ L′, A,∆′′,Γ′′

Σ,∆,Γ `te \Le : t⇒ L′ − L,A ∪ L,∆′′,Γ′′

T-Let
∆,Γ `c L1 Σ,∆,Γ `s s1 : t1 ⇒ L1, A1,∆1

Σ,∆1,Γ(x : t1) `te e2 : t2 ⇒ L2, A2,∆2,Γ
′(x : t′1)

Σ,∆,Γ `te let x = s1 in e2 : t2 ⇒ L1 ∪ L2, A1 ∪ (A2 − L1),∆2,Γ
′

Figure 4.21: JSR – typing rules for top expressions (`te). Inductive.

T-Function
dom(∆) ∩ L = ∅ L′ ∪ L′′ ∪M ⊆ L

Γ′ = Γ ↓ fv(recMf(x).e) L′ = @Locs(Γ′) Γ′′ = (Γ′)\L
′

tf = (∆, t)
L,A−→ (∆′, t′) Σ,∆,Γ′′(f : tf )(x : t) `te e : t′ ⇒ L′′, A,∆′,Γ′′′

Σ,Γ `w recMf(x).e : tf

Figure 4.22: JSR – typing rule for function values. Inductive.

body of the demotion expression is typeable under the modified environments ∆′

and Γ\L. The allocation effect of a demotion expression is L′−L, since the demote
operation itself moves all most recent object with an abstract location ` ∈ L into
the summary heap. Hence, there is no reason to enforce surrounding code to clean
the heap for abstract locations in L, which is the purpose of the allocation effect.
But it is also important to ensure that surrounding code is not allowed to split
away object with abstract locations ` ∈ L. If that is allowed, the type system
cannot establish INVOH. Hence, we extend the access effect with every abstract
location ` ∈ L.
The let expression (T-Let) basically evaluates the two expressions in sequence

and binds the value of the first expression to the variable on the left hand side
of the assignment. Hence, the type rule passes the new variable to the second
expression with the type that the first expression gets. It also handles the effects
with the two conditions L = L1 ∪ L2 and A = A1 ∪ (A2 − L1).

4.4.7 Typing of Functions

The rule T-Function (Figure 4.22) enforces a lot of restrictions. This rule is the
one that forbid a lot of the problems described in the introduction of the formal
calculus. It is not a surprise that the type of a recursive lambda expression is
a function type τf , and that the function body is typed with an extended type
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@Locs(_ L,A−→ _) = @Locs(udf) = @Locs(∅) = @Locs(obj(̃ L)) = ∅
@Locs(obj(@{`})) = {`}
@Locs(Γ(x : t)) = @Locs(Γ) ∪@Locs(t)
@Locs(>) = Location

Figure 4.23: JSR – locations in types and environments.

environment, in which the function parameter and the function itself is bound to
their types.
The rule also ensures that a precise singleton pointer is not accessible using free

variables and that the most recent heap is cleaned for all objects that may be
created during function evaluation. This is done by the following conditions:

1. The allocation effect L′′ of the function body is the set of abstract location
for which the function body e may create new objects, without handling the
demotion itself. Hence, to establish INVOH the type rule enforces that all
` ∈ L′′ are not part of the domain of the most recent heap by dom(∆)∩L = ∅
and L′′ ⊆ L.

2. The set L′ is used to ensure that free variables only point to aged objects.
This is done by Γ′ = Γ ↓ fv(recf(x).e) and L′ = @Locs(Γ′) and Γ′′ = (Γ′)\L

′ .

Since our non-standard substitution demotes singleton references before
transporting them into the body of a function this behavior is fulfilled
in the dynamic semantics if the correct demotion expressions are inserted
before function calls. The demotion is conservative and it causes most of
the complication in the typing rule, but it seems that this complication is
unavoidable.

The function @Locs is defined in Figure 4.23. For all types it is the empty
set, except for object types. For a type environment Γ it is computed by
building the union of the entries.

3. The annotation M of functions exists only in intermediate expressions. In a
program that a programmer writes all function expressions have M = ∅.

The purpose of the M is to keep track of all abstract locations that were
part of the allocation effect of the function before substitution changes free
variables into values.

One important step to prove soundness is, as usual a substitution lemma. It
is easier to formulate and prove if the annotation M does ensure that the
allocation effect is not reduced by substitution.
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Read-Exact
∆(`)(a) = t

Σ,∆ `r @`.a : t

Read-Inexact
Σ(`)(a) = t

Σ,∆ `r ˜̀ .a : t

Read-Union
∀` ∈ L(Σ,∆ `r q`.a : t′` ∧ t′` <: t)

Σ,∆ `r qL.a : t

Figure 4.24: JSR – reading properties.

Write-Inexact
(∀` ∈ L) t <: Σ(`)(a)

Σ,∆ `w ˜L.a := t⇒ ∆

Write-Exact
∆′ = ∆[` 7→ ∆(`)[a 7→ t]]

Σ,∆ `w @`.a := t→ ∆′

Figure 4.25: JSR – writing properties.

4.4.8 Auxiliary Relations

• Σ,∆ `r p.a : t

The relation `r takes the global heap environment Σ and the most recent
environment ∆ together with an reference type p = q` and the property a
and relates them to the type t. It is defined in Figure 4.24. The first two
rules state that if the qualifier is precise q = @, the type t is equal to the
type of ∆(`)(a), and if q = ˜ then t is equal to Σ(`)(a).

The third rule handles the cases, where p = qL, with |L| > 1. Reading from
such a union type is realized by reading each ` ∈ L, and computing a super
type of all the results.

• Σ,∆ `w p.a := t⇒ ∆

The relation `w takes the global heap environment Σ, the most recent envi-
ronment ∆, a reference type p = q`, the property a and the type of the right
hand side of the assignment t and relates it to a new most recent environment
if the assignment is valid.

Two rules define the behavior of the relation `w. They are presented in
Figure 4.25. The first rule handles the case, where p = ˜L. A write access
is only allowed if the type that should be stored inside the object property
is a subtype of all the property types. Hence, the condition t <: Σ(`)(a) is
enforced for all ` ∈ L. The second rule defines how write access to most
recent objects is realized. Because an object type with a precise reference
only allows one abstract location, the rule just has to update the most recent
heap appropriately. Because of INVOH it is ensured that this type change
does not break soundness.

• ∆,Γ `c L
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T-Clean
Γ = Γ\L ∆ = ∆\L dom(∆) ∩ L = ∅

∆,Γ `c L

T-AccessEx
A ∪ L `a @L

T-AccessIn
A `a ˜L

Figure 4.26: JSR – cleaning the heap, computing access effects.

Split-Base
∅, A `S ∅, ∅

Split-Left
l ∈ A ∆, A `S ∆1,∆2

∆(l : r), A `S ∆1(l : r),∆2

Split-Right
l /∈ A ∆, A `S ∆1,∆2

∆(l : r), A `S ∆1,∆2(l : r)

Figure 4.27: JSR – splitting the most recent heap.

The relation ∆,Γ `c L ensures that the most recent heap and the type
environment are cleaned for the set of abstract locations L. This implies
that the domain of ∆ does not contain any objects from L, and that there
are no references in ∆ and Γ pointing to a precise ` ∈ L. The relation is
defined in Figure 4.26. It uses the demote operations on heaps and on the
type environment.

• A `a p
The relation A `a p collects all abstract locations of p if p is a precise
reference. It is defined in Figure 4.26. The first rule handles the situation
where p = @L, the second rule handles the cases where p = ˜L.

• ∆, A `S ∆,∆

The split relation ∆, A `S ∆1,∆2 allows splitting the heap ∆ with respect
to the set of abstract locations A into two parts. It is defined in Figure 4.27.
The rule Split-Base states that splitting the empty environment yields two
empty environments. The rules Split-Left and Split-Right splits up one
entry to the left/right side, depending on if the condition ` ∈ A is fulfilled.

Because splitting is modeled as a relation it is also used to merge the two
heaps after the function call.

4.5 Soundness

In order to prove soundness, we take the typical approach, proving progress and
preservation. Usually, progress is the easy part, while preservation is the real hard
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work. In Section 4.5.1 we will introduce the notation of co-induction, and prove
some auxiliary lemmas for our type judgments, subtyping, etc.
In JSR it turns out that progress is not easy to prove. We have to prove that

the system does not get stuck. Looking at the rules of the dynamic semantics
easily shows that the only possibility to get stuck is due to the conditions in the
rules S-New, S-Rd and S-Wrt.
The rule S-New has the condition that the most recent heap does not contain

any other objects for the abstract location, for which the rule will create a new
object. This condition ensures that INVOH holds in JSR. The type system
ensures that the most recent heap environment ∆ does not contain ` objects if
an expression new` is typed. Hence, the direct application of the rule is not a
problem. This means in the case distinction of the progress lemma, the case of
new expressions is trivial.
To apply the rule S-Rd and S-Wrt, the implicit conditions – the reference of

the object that should be accessed is actually in the domain of the heap – must be
ensured. Interesting is here that the qualifier q, which determines which heap is
used for the lookup, is synchronized with the actual position of the object. If the
qualifier states that the object should be aged, and the object is part of the most
recent heap, the rules are not applicable, and our progress lemma will fail. Hence,
we have to prove that this mismatch is not possible.
By proving the absence of the mismatch we prove that it is possible to apply

S-Rd and S-Wrt in all situations. The critical issue in the proof is that due to the
modified substitution, some references are modified in advance to ensure that for
example all free variables of a closure will not be substituted by a precise reference.
As a consequence, it is not possible to prove that for all (̃ `, i), which are part of
an expression, the summary heap contains an object for address (`, i).
Because of these complications we have to face proving progress, we cannot hope

to prove it without some invariants that heavily depend on typing information.
Hence, instead of proving progress before preservation as usual, we begin with

the substitution lemma, which is proved in Section 4.5.2. In Section 4.5.3 we
formulate INVOH together with similar information about the heap and the heap
environments.
Next, we have to deal with the issues of the existing references inside of the

expression and the heaps. Therefore Section 4.5.5 defines the notation of unblock
contexts. With this notation we can formulate an appropriate invariant. The
invariant INVcls states that the references inside of the expression and the heaps
stay consistent such that program execution is never stopped because an object
is part of the wrong heap. Of course we can prove this only for correctly typed
programs.
Another precondition for the invariant to hold is that we are talking about

correctly preprocessed programs. The preprocessing step has to ensure that each
let expression with a new expression or a function call as the right hand side of
the assignment is surrounded by a demote expression. Since the let expression
has the precondition ∆,Γ `c L1, if L1 is the effect for the right hand side of the
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let expression, typing of programs without demote expressions around these let
expressions is not possible for all let expressions inside of the program.

4.5.1 Auxiliary Lemmas

Our presentation in this section rephrases the basic concepts similar to Chapter
21 from „Types and Programming Languages" [100].

Convention 4.5.1. Let X be a meta variable that ranges over values, expressions,
types and environments.

For the proofs we assume here that we have an universe U and a monotone
function F : P(U)→ P(U).

Definition 4.5.2 (Greatest Fixed Point). νF denotes the greatest fixed point of
F , which is defined by

νF := max{X | X = F (X)}.

Definition 4.5.3 (F -consistent). For a monotone function F the set X ⊆ U is
F -consistent if X ⊆ F (X).

Theorem 4.5.4 (Knaster-Tarski [112]). The union of all F -consistent sets is the
greatest fixed point of F .

Definition 4.5.5 (Transitivity). For an universe U a relation R ⊆ U × U is
transitive if R is closed under the monotone function TR(R) = {(x, y) | ∃z ∈ U :
(x, z) ∈ R ∧ (z, y) ∈ R} – i.e. if TR(R) ⊆ R.

Lemma 4.5.6. The subtyping relation <: is reflexive and transitive.

Proof. Reflexivity per definition (ST-Refl).

Transitivity Let S be the monotone function presented in Figure 4.16. Since νS
is a fixed point, νS = S(νS). Hence, TR(νS) = TR(S(νS)). Under the
assumption

TR(S(νS)) ⊆ S(TR(νS)) (4.13)

we can conclude TR(νS) ⊆ S(TR(νS)). Hence, TR(νS) is S-consistent and
Theorem 4.5.4 implies TR(νS) ⊆ νS. Hence, νS is transitive.

It remains to prove equation (4.13). We show the stronger fact that for all
R ⊆ U × U it holds TR(S(R)) ⊆ S(TR(R)).

Let (t1, t2) ∈ TR(S(R)). The definition of transitivity yields that there exists
a type t′ such that (t1, t

′) ∈ S(R) and (t′, t2) ∈ S(R).

Now we prove (t1, t2) ∈ S(TR(R)).

Case distinction over shape of t′.
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• Case t′ = >: Since (t′, t2) ∈ S(R), the definition of S implies t2 =
>. Hence, (t1, t2) = (t1,>) ∈ S(Q) for all Q and therefore (t1, t2) ∈
S(TR(R)).

• Case t′ = obj(p): Since (t′, t2) ∈ S(R) the definition of S implies
t2 = >, t2 = obj(p) or t2 = obj(p′).

Case distinction over shape of t2.

– Case t2 = >: This is analogous to the case t′ = >.

– Case t2 = t′ = obj(p): Then (t1, t2) ∈ S(R). The definition of TR
yields (t1, t2) ∈ TR(S(R)) by setting z = y = t2 and x = t1.

– Case t2 = obj(p′): The definition of S yields p = qL and p′ = qL′

with L ⊆ L′. Further, t1 = obj(p′′) holds and we get p′′ = qL′′ with
L′′ ⊆ L. Hence, L′′ ⊆ L′. By the definition of S (t1, t2) ∈ S(Q) for
all Q, hence (t1, t2) ∈ S(TR(R)).

End case distinction over shape of t2.

• Case t′ = udf: Analog to the object case.

• Case t′ = (∆p, t
′
p)

L′,A′−→ (∆r, t
′
r): The case t2 = > is analogous to the

case t′ = >.

Otherwise (t′, t2) ∈ S(R) implies t2 = (∆p, t
2
p)

L2,A2−→ (∆r, t
2
r) with

(t2p, t
′
p) ∈ R, (t′r, t

2
r) ∈ R, L′ ⊆ L2 and A′ ⊆ A2.

Similarly, t1 = (∆p, t
1
p)

A1,L1−→ (∆r, t
1
r) with (t′p, t

1
p) ∈ R, (t1r , t

′
r) ∈ R,

L1 ⊆ L′ and L2 ⊆ A′.

Hence, L1 ⊆ L2 and A1 ⊆ A2. The definition of TR implies (t1r , t
2
r) ∈

TR(R) and (t2p, t
1
p) ∈ TR(R). The definition of S implies (t1, t2) ∈

S(TR(R)).

End case distinction over shape of t′.

Lemma 4.5.7. For all L and L′ ⊆ L

(X\L)\L
′

= X\L = (X\L′)\L

Proof by induction over the definition of the recursive function ·\L. Let L and L′

be fixed with L′ ⊆ L.

• Case X is a value:

Case distinction over X = v.

– Case X = x,X = recf(x).e,X = udf, X = (̃ `, i): trivial, since the
demote operation is the identity function.
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– Case X = (@`, i): If ` ∈ L, it holds X\L = (̃ `, i), such that another
demotion with L′ yields the desired result.

If ` /∈ L, then we can conclude ` /∈ L′, since L′ ⊆ L. This is sufficient
to prove the desired equation.

The second part of the equation is analogous.

End case distinction over X = v.

• Case X is an expression or top level expression: By induction

• Case X is a type: A simple case distinction over the structure of types yields
the desired result. The interesting case is X = obj(@`). It is analogous to
the case X = (@`, i).

• Case X is an environment: For heaps, object maps, type environments,
most recent environments and summary environments just apply induction
hypothesis.

Lemma 4.5.8. It holds
X\∅ = X

Proof. Trivial by definition of ·\.

Lemma 4.5.9. If t1 <: t2 then t\L1 <: t\L2 .

Proof by induction over the definition of ·\L. First, please notice that the demote
function is total.

• Case t1 = obj(@`1): There are two cases for t2, either t2 = > or t2 = t1.
Both are immediate.

• Case other: immediate.

Lemma 4.5.10. If Σ,∆,Γ `te e : t⇒ L,A,∆′,Γ′, then dom(Γ) = dom(Γ′).

Proof by induction over the type judgment.

• Case T-Value: immediate.

• Case T-Let: immediate by induction.

• Case T-Demote: immediate by induction and the fact that the demote
operation on type environment is defined point-wise.
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Lemma 4.5.11. If Σ,Γ `w w : t then Σ,Γ\L `w w\L : t\L.

Proof. Case distinction over the typing judgment `w.

• Case T-Undefined: immediate

• Case T-Variable: immediate

• Case T-Object, t = obj(qL′): If q = ,̃ then t\L = t. Inversion of `w yields
v = (̃ `, i) for ` ∈ L′. Hence, it also holds v\L = v. Applying T-Object to
the demoted value and type is allowed for an arbitrary type environment.

If q = @, then L′ = {`}. Hence, inversion of `w yields v = (@`, i). There are
two cases:

– Case ` ∈ L: It holds (@`, i)\L = (̃ `, i), and t\L = obj(̃ {`}).
– Case ` /∈ L: The type and the value do not change and hence the desired

result is trivial.

• Case T-Function: nothing happens, trivial.

End case distinction over the typing judgment `w.

Definition 4.5.12 (INVlam). INVlam is fulfilled by an expression e (INVlam(e)),
if for all subexpressions e′ of the form e′ = recMf(x).e′′, no exact reference occurs
in e′′.

Lemma 4.5.13. If INVlam(e) and H,H0, e −→ H ′, H ′0, e
′, then INVlam(e′).

Proof. trivial by induction of −→.

Lemma 4.5.14. If C = (∅, ∅, e) is a configuration and INVlam(e), then for all
C ′ = (H ′, H ′0, e

′), with C −→∗ C ′, e′ fulfills INVlam(e′).

Proof. immediate by induction and Lemma 4.5.13.

4.5.2 Substitution

This subsection contains the proof of the substitution lemma. It is an impor-
tant step towards soundness, because many rules in the dynamic semantics use
substitution.
We prove the lemma in three flavors, once for values, once for expressions, and

once for top level expressions. The proof is based on induction over the structure
of the value, expression of top expression.

Definition 4.5.15 (Type Environment Abbreviation). Let x range over all vari-
ables, tx over all types and Γ over all type environments. Then Γx is a abbreviation
for Γ(x : tx) and Γx for Γ ↓ {y | y ∈ dom(Γ), y 6= x}.
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Lemma 4.5.16 (Substitution). For a type environment Γ, a global heap environ-
ment Σ and a closed v with

Σ,Γ `w v : tx, (4.14)

it holds:

1. Substitution on values:

Σ,Γ(x : tx) `w v0 : t (4.15)

implies

Σ,Γ `w v0{x Z⇒ v} : t

2. Substitution on expressions

Σ,∆,Γ(x : t′x) `s s : t0 ⇒ L,A,∆′

tx <: t′x

implies

Σ,∆,Γ `s s{x Z⇒ v} : t0 ⇒ L,A,∆′

3. Substitution inside of top expressions

Σ,∆,Γ(x : t′x) `te e : t0 ⇒ L,A,∆′,Γ′

tx <: t′x

implies

Σ,∆,Γ `te e{x Z⇒ v} : t0 ⇒ L,A,∆′,Γ′

Closedness of v is needed. Otherwise substitution may change the set of free
variables of a lambda abstraction, which in turn may enlarge the set of exact
references passed into the body of the lambda abstraction, and thus enlarge the
set L′ in the typing rule for abstraction (T-Function).

Proof. By induction on the structure of the value, expressions and top level ex-
pressions. We make a case distinction over the last applied type rule, to make it
better readable.

1. Values

Case distinction over the structure of the value v0.
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• Case v0 = y: Inversion of (4.15) with T-Variable yields

Γ(x : tx)(y) = t

There are two cases, either x = y or x 6= y. Both are trivial.

• Case v0 = recMf(y).el for a set of locations M : If x /∈ fv(recMf(y).el),
then the desired result is immediate because v0 is then not affected by
substitution.

Now assume that x ∈ fv(recMf(y).el). Hence, x ∈ fv(el) and x 6= y and
x 6= f .

Then, inversion of (4.15) using T-Function yields:

t = tf = (∆2, ty)
L,A−→ (∆1, tr) (4.16)

dom(∆2) ∩ L = ∅ (4.17)
L′ ∪ L′′ ∪M ⊆ L (4.18)

Γ′ = Γ(x : tx) ↓ fv(recf(y).el)

L′ = @Locs(Γ′) (4.19)

Γ′′ = (Γ′)\L
′

Σ,∆2,Γ
′′yf `te el : tr ⇒ L′′, A,∆1,Γ

′′′ (4.20)

x ∈ dom(Γ′′y) holds because x ∈ fv(el). That is why Γ′′ from equation
(4.20) contains an assignment for x, and we can write Γ′′ = Γ′′x(x : tx).
Rewriting judgment (4.20) to highlight on the important variable x
yields (since x 6= f, x 6= y):

Σ,∆2,Γ
′′yf
x (x : tx) `te el : tr ⇒ L′′, A,∆1,Γ

′′′
x (x : t′x)

The environment Γ′′′x (x : t′x) contains a binding for x because of
Lemma 4.5.10.

Next we show:

Σ,Γ′′yfx `w v\ : t\x (4.21)

To figure out (4.21) we make use of (4.14) and Lemma 4.5.11. We are
able to change the Γ because v is closed. Notice that if v is closed, then
v\ is closed, too. So we can apply induction on el and v\, which yields

Σ,∆2,Γ
′′yf
x `te el{x Z⇒ v\} : tr ⇒ L′′, A,∆1,Γ

′′′
x

Thus, the preconditions for T-Function are fulfilled and yields for
some M ′ and M ′′:

Σ,Γ `w (recM
′
f(y).el){x Z⇒ v} : (∆2, ty)

M ′′,A−→ (∆1, tr) (4.22)
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Next, we have to show that M ′′ = L. This is trivial, since substitution
sets M ′ = M ∪@Locs(v), which will compensate the possible change of
L′ due to removing x from Γ(x : tx).

• Case v0 = (q`, i), v0 = udf: The value is not affected by the substitu-
tion.

End case distinction over the structure of the value v0.

2. Top Expressions:

Case distinction over the structure of e, or `te.

• Case T-Value, e = v0: It must be that L = ∅, A = ∅, ∆ = ∆′, and
Γ(x : tx) = Γ′. Inversion of T-Value yields:

Σ,Γ(x : tx) `w v0 : t′0

t′0 <: t0

By induction we can substitute inside of v0. Hence, the claim holds.

• Case T-Let: Suppose that

Σ,∆,Γ(x : tx) `te let y = s in e : t0 ⇒ L,A,∆0,Γ0(x : tx0)(4.23)

and Σ,Γ `w v : tx.

We can assume y 6= x, because if x = y holds, the substitution does not
affect the expression, which implies that the lemma holds.

Inversion of (4.23) yields:

∆,Γ `c L1 (4.24)
L = L1 ∪ L2

A = A1 ∪ (A2 − L1)

Σ,∆,Γ(x : tx) `s s : t1 ⇒ L1, A1,∆1 (4.25)

Σ,∆1,Γ(x : tx)(y : t1) `te e : t2

⇒ L2, A2,∆2,Γ2(x : tx0)(y : t′1)
(4.26)

Induction is applicable to (4.25) and yields:

Σ,∆,Γ(x : tx) `s s{x Z⇒ v} : t1 ⇒ L1, A1,∆1 (4.27)

Induction is applicable to (4.26) and yields that:

Σ,∆1,Γ(y : t1) `te e{x Z⇒ v} : t2

⇒ L2, A2,∆2,Γ2(y : t′1)
(4.28)
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Finally, the let rule is applicable to (4.27) and (4.28) to yield the desired:

Σ,∆,Γ `te let y = s{x Z⇒ v} in e{x Z⇒ v} : t2

⇒ L1 ∪ L2, A1 ∪ (A2 − L1),∆2,Γ2

That is:

Σ,∆,Γ `te (let y = s in e){x Z⇒ v} : t2

⇒ L,A,∆2,Γ2

• Case e = \L
′
el:

We can assume that x ∈ dom(Γ), since otherwise the substitution will
not affect the expression.

Please note that compared to the type rule, L and L′ is swapped, since
L is the effect and L′ is the annotation at the demotion expression.
Inversion of the type judgment yields:

Σ,∆BL
′
∆′ (4.29)

Σ,∆′,Γ\L
′ `te el : t⇒ L,A,∆′′,Γ′′ (4.30)

L′ ⊆ L

Because of Lemma 4.5.11 and (4.14):

Σ,Γ\L
′ `w v\L

′
: t\L

′
x (4.31)

Hence, induction hypothesis is applicable to (4.30), x and v\L
′ such

that:

Σ,∆′,Γ\L
′ `te el{x Z⇒ v\L

′} : t0 ⇒ L,A,∆′′,Γ′′ (4.32)

Applying T-Demote to (4.29), (4.32) yields the desired result.

End case distinction over the structure of e, or `te.

3. Simple Expressions:

Case distinction over `s.
• Case T-Value: analogous to the case T-Value of the relation `te.
• Case T-Function Call, s = v1(v2): Immediate by induction.

• Case T-New, s = new`: Immediate.

• Case T-Read, s = v0.a: Immediate by induction.

• Case T-Write, s = v01.a := v02: Immediate by induction.

End case distinction over `s.
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Σ,∆, L,A  H,H0 Σ,∆, ∅ `te e : t⇒ L,A,∆′, ∅
Σ,∆ e H,H0, e : t⇒ L,A,∆′

∅ ∆ H0

L ∩ dom(H0)↓1 = ∅ A ⊆ dom(∆)

∀` ∈ dom(∆) : ∃=1i : (`, i) ∈ dom(H0) ∧ Σ,∆ o H0(`, i) : ∆(`)

∆, L,A ∆ H0

dom(H) ∩ dom(H0) = ∅
∆, L,A ∆ H0 ∀(`, i) ∈ dom(H) ` ∈ dom(Σ) ∧ Σ,∆ o H(`, i) : Σ(`)

Σ,∆, L,A  H,H0

(∀a ∈ dom(h)) a ∈ dom(r) ∧ Σ, ∅ `w h(a) : r(a)

Σ,∆ o h : r

Figure 4.28: JSR – typing of heaps and configurations.

4.5.3 Heap Consistency

We will now start to make connections between the dynamic and the static se-
mantics. We define the consistency between the static type environments and the
dynamic heaps in Figure 4.28. This relation also ensures that for each abstract
location at most one object is part of the most recent heap.
There are two other properties the relation establishes. First, it ensures that for

all abstract locations ` ∈ L there exists no element in the most recent heap H0

and that for all abstract locations ` ∈ A there exists an entry in ∆. So the set A is
a lower bound on the domain of ∆. The following lemmata about the consistency
relation state some properties:

Lemma 4.5.17. If Σ,∆, L,A  H,H0 then L× N ∩ dom(H0) = ∅.

Proof. Immediate by inversion of the definitions.

Lemma 4.5.18. If Σ,∆, L,A  H,H0 then ∀` ∈ A∃i ∈ N : (`, i) ∈ dom(H0).

Proof. Immediate by inversion of the definitions.

Lemma 4.5.19. If Σ,∆, L,A  H,H0 then Σ,∆, L′, A′  H,H0 for L′ ⊆ L and
A′ ⊆ A.

Proof. Trivial by inversion of the definition of the heap consistency relation.

Lemma 4.5.20. If Σ,∆, L,A  H,H0 then INVH(H,H0)
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Definition 4.5.21 (Type respecting configurations). A configuration C is respect-
ing the environments Σ,∆ with type t, if there exists L,A,∆′ with:

Σ,∆ e C : t⇒ L,A,∆′ . (4.33)

C is a type respecting configuration, if there exists Σ,∆ and t, such that C is
respecting Σ,∆ with t.

4.5.4 Structure of Function and Demotion Expressions

Definition 4.5.22 (INVdf). For an expression e it holds INVdf (INVdf(e)), if

1. for all subexpressions s of e with the form:

s = (recMf(x).ef )(w)

M 6= ∅ implies there exists a subexpression e′′ of e, such that

e′′ = \Llet x = s in eb

with M ⊆ L.

2. for all subexpressions e′ of e of the form:

e′ = \Leb

then
eb = let x = s in el (4.34)

for an expression s and top level expressions el.

Definition 4.5.23 (Expression written by a programmer). An expression is writ-
ten down by the programmer if it fulfills the following constraints:

1. The expression does not contain references.

2. The M -annotations of function expressions are empty.

3. The bodies of all demote expressions are let expressions.

Lemma 4.5.24 (INVdf). If C = (∅, ∅, e) is a type respecting configuration, and e
is a program that a programmer is allowed to write down, then e fulfills INVdf.

Proof. trivial by induction over the type judgment

Lemma 4.5.25 (INVdf). If INVdf(e) and

Σ,∆ e H,H0, e : t⇒ L,A,∆′ (4.35)

and H,H0, e −→ H ′, H ′0, e
′, then INVdf(e

′).
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Proof by induction over −→.

• Case S-Dem, e = \Lem:

The only interesting case occurs, if

em = let x = recMf(x).ef (v) in eb

because this is the only subexpression, for which the existence of
the surrounding demote expression may change. Due to (4.35) it
holds M ⊆ L. From the definition of e ↘ L we can conclude
e′ = let x = rec∅f(x).ef (v) in eb.

• Case S-App,S-Let,S-New,S-Rd,S-Wrt: use Lemma 4.5.16.

• Case S-Let′: by induction

4.5.5 Unblocked Contexts

To prove soundness, an essential part is to prove that during program execution
all references inside of an expression, and all references inside of the heaps, point
to valid objects. Since the demote expression moves objects from the most recent
heap into the summary heap in order to ensure that at each time only one object
per abstract location is part of the most recent heap (INVOH), the crucial point
is to prove that if we move an object from the most recent heap to the summary
heap, all references pointing to this object are adjusted correctly.
Since our semantics models this movement also during substitution (e.g.

λx.e{x Z⇒ v} demotes everything in v, such that x is substituted by v\), another
important aspect is to prove that the corresponding objects for these references
are moved into the summary heap, before the lambda expression is executed.
In order to deal with the second aspect, we introduce the notation of unblocked
contexts.

Definition 4.5.26 (Unblocked context for references). An unblocked context U `
for an imprecise reference (̃ `, i) is defined for all L such that ` /∈ L as

U ` ::= �.a | �.a :=w
| recLf(x).U ` | \LU `
| let x = U ` in e | let x = s in U `
| U `(w) | w(U `) | w.a :=U `

This definition ensures that all references inside of a lambda or a demote ex-
pression with ` ∈ L are not in an unblocked context.

Definition 4.5.27 (Reference occurrence). A reference (q`, i) occurs in a value
v, expression s or top level expression e, if in the abstract syntax tree of v, s or e
there exists a leaf of the form (q`, i).
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Definition 4.5.28 (Reference correctness). A reference (q`, i) is correct with re-
spect to the heaps H and H0, H,H0  (q`, i), if all of the following holds:

• H,H0  (̃ `, i) iff (`, i) ∈ dom(H) ∪ dom(H0) and

• H,H0  (@`, i) iff (`, i) ∈ dom(H0).

The invariant INVcls states closedness of a configuration with respect to the
heap. Any reference contained in one of the heaps or in the expression is defined
in one of the heaps.

Definition 4.5.29 (INVcls). INVcls is fulfilled by a configuration C = (H,H0, e)
(INVcls(C)), if all of the following holds:

1. e is closed.

2. If (q`, i) occurs in e, then H,H0  (q`, i).

3. If e = U `[(̃ `, i)], then (`, i) ∈ dom(H).

4. For all (`, i) ∈ dom(H) ∪ dom(H0), if h = (H ∪ H0)(`, i) then, for all a ∈
dom(h),

a) if (q`′, i′) occurs in h(a), then H,H0  (q`′, i′) and

b) if h(a) = (̃ `′, i′), then (`′, i′) ∈ dom(H).

Lemma 4.5.30 (INVcls). If INVdf(e), INVcls(H,H0, e), H,H0, e −→ H ′, H ′0, e
′

and

Σ,∆ e H,H0, e : t⇒ L,A,∆′

then INVcls(H
′, H ′0, e

′).

Proof. The first item of the invariant holds trivially.
Case distinction on the definition of the the reduction −→.

• Case S-Dem:
H,H0, \

Le −→ (H,H0)\L, e↘ L

Thus with HL = H\L
0 ↓ {(`, i) | ` ∈ L, i ∈ N}, H ′ = H\L ∪ HL and H ′0 =

H\L
0 \HL.

– item 2 holds, because e and e↘ L have the same set of references and
dom(H ′) ∪ dom(H ′0) = dom(H) ∪ dom(H0).

– Item 3 holds as follows. Suppose that e ↘ L = U `[(̃ `, i)]. We have to
prove that (`, i) ∈ dom(H ′).

∗ Case ` /∈ L: If ` /∈ L, then U `1 = \LU ` is an unblocking context for
(`, i) and the original expression \Le. Since INVcls holds for \Le,
(l, i) ∈ dom(H). This implies (l, i) ∈ dom(H ′).
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∗ Case ` ∈ L: item 2 yields that (`, i) ∈ dom(H ′) ∪ dom(H ′0). Since
` ∈ L, (`, i) ∈ HL. Hence, (`, i) ∈ dom(H ′).

– For item 4, take some (`, i) ∈ dom(H) ∪ dom(H0). It holds (`, i) ∈
dom(H ′) ∪ dom(H ′0). Let h = (H ∪ H0)(`, i) and h′ = (H ′ ∪ H ′0)(`, i)
with dom(h) = dom(h′). Let a ∈ dom(h) be an arbitrary property.

∗ Case item 4a:

· Case (@`, i′) occurs in h′(a): First, `′ /∈ L due to the def-
inition of the demote operation on heaps. Second, because
INVcls(H,H0, e), it holds (`′, i′) ∈ dom(H0). By definition of
H ′0 and L it follows (`′, i′) ∈ dom(H ′0).

· Case (̃ `′, i′) occurs in h′(a): (`′, i′) ∈ dom(H ′) ∪ dom(H ′0) =
dom(H) ∪ dom(H0).

Thus, item 4a holds.

∗ Case item 4b: Let h′(a) = (̃ `′, i′). There are two cases:

· Case `′ /∈ L: It holds (`′, i′) ∈ dom(H) ⊆ dom(H ′).

· Case `′ ∈ L: It holds (`′, i′) ∈ dom(HL) ⊆ dom(H0) so that
(`′, i′) ∈ dom(HL) ⊆ dom(H ′).

Thus, item 4b holds.

Hence, INVcls(H
′, H ′0, e

′) holds.

• Case S-App:

H,H0, (rec
Mf(x).e)(v) −→ H,H0, e{f, x Z⇒ recMf(x).e, v}

– item 2 holds because substitution only changes precise to imprecise
references, which is covered by the definition of H,H0  (q`, i).

– item 3 Suppose e′ = U `[(̃ `, i)].
Due to INVdf(e) we can conclude M = ∅, which implies ` /∈ M . Then
the references was unblocked before the execution, which implies (l, i) ∈
dom(H). Since the heaps do not change, item 3 is shown.

– Since the heaps do not change, item 4 is trivial.

• Case S-Let, S-New, S-Rd, S-Wrt: trivial

• Case S-Let′: by induction

End case distinction on the definition of the the reduction −→.

Lemma 4.5.31. If C = (∅, ∅, e) is a type respecting configuration and e is a
program that a programmer is allowed to write down, then C fulfills INVcls.

Proof. The proof is trivial, since programs, written down by the programmer, do
not contain references.
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4.5.6 Progress

The invariant INVcls is the most important information used to prove progress.
Due to Lemma 4.5.30 and Lemma 4.5.31, we prove progress for programs that
fulfills the invariant INVcls. We can than conclude progress holds for all programs
the programmer can write down.

Lemma 4.5.32 (Progress). For a type respecting configuration C = (H,H0, e)
that fulfills INVcls(C) either

• there exists H ′, H ′0, e
′, such that

H,H0, e −→ H ′, H ′0, e
′

• or e is a value

Proof. There are two critical parts in the proof. The first is to ensure that the
side conditions of S-Rd and S-Wrt are fulfilled. The second is establish the side
condition of the S-New rule. In all other cases, the evaluation rules of JSR do not
have any side condition, which means, if we are able to show that the expression
has a structure suitable for the evaluation rule, there is no additional reason that
will disallow the application.
The side condition of S-Rd and S-Wrt demands that there is an object for the

reference in the heap. INVcls ensures that the reference of the expression and the
heaps are synchronized correctly.
The side condition of S-New demands that the most recent heap is empty for

the abstract location for which a new object should be created. Typing ensures
that if an expression has an allocation effect L the most recent heap is not allowed
to contain objects with abstract location ` ∈ L. Therefore, the side condition of
S-New is fulfilled.
The proof is by induction over the structure of e. As usual we can omit all cases

where e is a value or a variable (the first due to the second item of the progress
lemma, the second due to the fact, that INVcls(e) ensures that e is closed.)

• Case e = let x = s in e′: If s is a value, then we can apply S-Let. If s is not
a value, then we use induction hypothesis, the rule S-Let′ and Lemma 4.2.5.

• Case e = \Le′: We can apply T-Demote.

• Case e = (q`, i).a: From INVcls we can conclude that the reference is part
of the corresponding heap, which will allow map look up. Hence, S-Rd is
applicable.

• Case e = (q`, i).a := v: Analogous, use S-Wrt.

• Case e = new`: The fact that C is a type respecting configuration ensures
that the most recent heap does not contain an ` object because the allocation
effect of the new expression is {`}.
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• Case else: All other cases are trivial.

4.5.7 Preservation

Lemma 4.5.33 (Synchronized demotion). If

Σ,∆, L′, A  H,H0

and Σ,∆BL ∆′

and L ⊆ A

then

Σ,∆′, L′ ∪ L,A− L  (H,H0)\L . (4.36)

Proof. Let (H ′, H ′0) = (H,H0)\L. Inversion of Σ,∆BL ∆′ yields:

Σ = Σ\L

∆′ = ∆\L ↑ L
∀` ∈ L : L `h ∆(`)C Σ(`)

Inversion of Σ,∆, L′, A  H,H0 yields:

dom(H) ∩ dom(H0) = ∅ (4.37)
∆, L′, A  H0

∀(`, i) ∈ dom(H) : ` ∈ dom(Σ) ∧ Σ,∆  H(`, i) : Σ(`)

It holds dom(H ′) ∩ dom(H ′0) = ∅ by definition of H and H ′0 and (4.37), which is
the first condition of (4.36). By inversion of ∆, L′, A  H0 it holds:

L′ ∩ dom(H0)↓1 = ∅
A ⊆ dom(∆)

∀` ∈ dom(∆) : ∃=1i : (`, i) ∈ dom(H0) ∧ Σ,∆ o H0(`, i) : ∆(`)

By the definition of H ′0 it holds L ∩ dom(H ′0)↓1 = ∅. As a consequence it holds
(L ∪ L′) ∩ dom(H ′0)↓1 = ∅, and hence

∆′, L ∪ L′, A− L  H ′0 ,

because of Lemma 4.5.11. Hence, the second condition of (4.36) is valid and it is
left to prove that

∀(`, i) ∈ dom(H ′) : ` ∈ dom(Σ) ∧ Σ,∆  H ′(`, i) : Σ(`)

holds.
For an arbitrary (`, i) ∈ dom(H ′), there are two cases:
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• Case (`, i) ∈ dom(H): We can apply Lemma 4.5.11.

• Case (`, i) /∈ dom(H): It holds by the definition of H ′ that (`, i) ∈ dom(H0),
H ′(`, i) = H0(`, i)\L and ` ∈ L, which implies ` ∈ dom(∆). Hence, we apply
Lemma 4.5.11.

Lemma 4.5.34 (Extension of most recent environment). If

Σ,∆,Γ `s e : t⇒ L,A,∆′,Γ′,

∆1 = ∆(`1 : r1) . . . (`n : rn)

when ∀i ∈ {1, . . . n} : `i /∈ L and `i /∈ dom(∆)

then

Σ,∆1,Γ `s e : t⇒ L,A,∆′1,Γ
′

with ∆′1 = ∆′(`1 : r1) . . . (`n : rn).

Proof. By induction over the type judgment.

Theorem 4.5.35 (Preservation). For configurations C = (H,H0, e) and C ′ =
(H ′, H ′0, e

′) with C −→ C ′ and

Σ,∆ e C : t⇒ L,A,∆′

there exists Ln, An,∆n such that

Σ,∆n e C
′ : t⇒ Ln, An,∆

′ (4.38)

and Ln ∪An ⊆ L ∪A.

Proof by induction over −→.

• Case S-Dem:

H,H0, \
Lde −→ (H,H0)\Ld , e↘ Ld

Σ,∆ e H,H0, \
Lde : t⇒ L,A,∆′

Inversion of the typing consistency judgments yields

Σ,∆, L,A  H,H0

Σ,∆, ∅ `te \Lde : t⇒ L,A,∆′, ∅ (4.39)
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Now inversion of (4.39) using T-Demote yields that there exits ∆n, L′ and
A′ with

Σ,∆BLd ∆n

Ld ⊆ L
Σ,∆n, ∅ `te e : t⇒ L′, A′,∆′, ∅ (4.40)

L = L′ − Ld
A = A′ ∪ Ld

It therefore holds Ld ⊆ A, L′ = L ∪ Ld and A′ = A − Ld. Let (H ′, H ′0) =
(H,H0)\Ld . By Lemma 4.5.33, we get

Σ,∆n, L ∪ Ld, A− Ld  H ′, H ′0

which is

Σ,∆n, L
′, A′  H ′, H ′0

Σ,∆n `te e ↘ Ld : t ⇒ Ln, An,∆
′ follows from (4.40) and the definition of

e ↘ Ld. e ↘ Ld only affects the M -annotation on a function, which does
not affect typing (see T-Function). Hence, (4.38) is shown.

• Case S-App:

H,H0, (rec
Mf(x).e)(v) −→ H,H0, e{f, x Z⇒ recMf(x).e, v}

Σ,∆ e H,H0, (rec
Mf(x).e)(v) : t⇒ L,A,∆′

Inversion yields

Σ,∆, L,A  H,H0 (4.41)

Σ,∆, ∅ `s (recMf(x).e)(v) : t⇒ L,∆′, ∅ (4.42)

Further inversion of (4.42) with the T-Function Call rule yields

∆ = ∆\L

Γ = Γ\L

dom(∆) ∩ L = ∅ (4.43)
∆, A `S ∆1,∆2 (4.44)
∆′, A `S ∆′1,∆2 (4.45)

Σ, ∅ `w v : t2 (4.46)

Σ, ∅ `w recMf(x).e : (∆1, t2)
L,A−→ (∆′1, t) (4.47)
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Inversion of (4.47) with the T-Function rule yields

dom(∆1) ∩ L = ∅
L′ ∪ L′′ ∪M ⊆ L (4.48)

Γ′ = ∅ = (Γ ↓ fv(λ(y, x).e))

Γ′′ = ∅ = Γ′\L
′

Σ,∆1, ∅(x : t2) `s e : t⇒ L′′, A′′,∆′1, ∅(x : t′2) (4.49)

Because of (4.46) v is closed. The function expression itself is closed, too.
We apply Lemma 4.5.16 (substitution) on (4.49), and (4.46) and get

Σ,∆1, ∅ `s e{f, x Z⇒ recMf(x).e, v} : t⇒ L′′, A′′,∆′1, ∅ (4.50)
A′′ ⊆ A

Next, we apply Lemma 4.5.34 to (4.50) to get a typing with ∆ and ∆′. This
is possible due to (4.48), (4.43), (4.44) and (4.45). The heap consistency is
valid due to (4.41). Thus it is (4.38).

• Case S-Let:

H,H0, let x = v in e −→ H,H0, e{x Z⇒ v}

Inversion of the heap typing rule for the left-hand side yields

Σ,∆, L,A  H,H0 (4.51)
Σ,∆, ∅ `s let x = v in e : t⇒ L,A,∆′, ∅ (4.52)

Inverting (4.52) with the T-Let rule and the T-Value rule yields

Σ,∆, ∅ `s v : t1 ⇒ ∅, ∅,∆, ∅
Σ, ∅ `w v : t′1 (4.53)
t′1 <: t1 (4.54)

Σ,∆, ∅(x : t1) `te e : t⇒ L,A,∆2, ∅(x : t′1) (4.55)

Applying Lemma 4.5.16 to (4.53) and (4.55) and (4.54) yields the desired

Σ,∆, ∅ `s e{x Z⇒ v} : t⇒ L,A,∆2, ∅

Because heaps do not change, heap consistency is trivial.

• Case S-New: We know that

H,H0, new
l −→ H,H0[(`, i) 7→ {}], (@l, i) (4.56)

dom(H0) ∩ ({`} × Z) = ∅
(`, i) /∈ dom(H)

Σ,∆ e H,H0, new
l : obj(@l)⇒ {l}, ∅,∆′′ (4.57)
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where ∆′′ = ∆(l : {}). Now we have to show that there exists ∆′ so that

Σ,∆′ e H,H
′
0, (@l, i) : obj(@l)⇒ ∅, ∅,∆′′ (4.58)

Inversion of (4.57) yields

Σ,∆, {`}, ∅  H,H0 (4.59)

Σ,∆, ∅ `s newl : obj(@l)⇒ {l}, ∅,∆(` 7→ {}), ∅ (4.60)
∆′′ = ∆(` 7→ {})

From the definition of `s and `w we get

Σ,∆′′, ∅ `s (@l, i) : obj(@l)⇒ ∅, ∅,∆′′, ∅

(4.59) implies

Σ,∆(` 7→ {}), ∅, ∅  H,H0[(`, i) 7→ {}]

• Case S-Rd: For q = @ or q = ˜ it holds

H,H0, (ql, i).a −→ H,H0, (H ∪H0)(l, i)$a

Σ,∆ e H,H0, (ql, i).a : t⇒ ∅, A,∆ (4.61)
L = ∅

We have to show that

Σ,∆ e H,H0, (H ∪H0)(l, i)$a : t⇒ Ln, An,∆ (4.62)
Ln ∪An ⊆ A

Inverting (4.61) gives us consistency of heaps and their typings and the typing
of the expression

Σ,∆, ∅, A  H,H0 (4.63)
Σ,∆, ∅ `s (ql, i).a : t⇒ ∅, A,∆, ∅

and after another inversion of the second part

Σ, ∅ `w (ql, i) : obj(qLr)

Σ,∆ `r ql.a : t (4.64)
A `a qLr
l ∈ Lr

Case distinction over the precision of the pointer.
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– Case ql = @l, ⇒ (l, i) ∈ dom(H0):
Since (4.64) l ∈ dom(∆). Because of (4.63) we know

Σ,∆ o H0(l, i) : ∆(l)

Cause of (4.64) we get ∆(l)(a) = t. Inverting the line above yields

Σ, ∅ `w H0(l, i)$a : t

– Case ql = l̃, ⇒ (l, i) ∈ dom(H):
The inversion of (4.64) yields Σ(l)(a) = t′, t′ <: t. From (4.63) we get
Σ,∆ o H(l, i) : Σ(l), hence

Σ, ∅ `w H(l, i)$a : t .

As in the other case we fullfill (4.62).

End case distinction over the precision of the pointer. In both cases Ln = ∅
and An = ∅. Therefore, Ln ∪An = ∅ ⊆ L ∪A.

• Case S-Wrt: Hence, e = (q`, i).a := v. Inversion of the configuration typing
rule yields:

L = ∅
Σ,∆, ∅ `s (q`, i).a := v : udf⇒ ∅, A,∆′, ∅ (4.65)

Σ,∆, ∅, A  H,H0

Further inversion of (4.65) yields

Σ, ∅ `w (q`, i) : obj(qL′) (4.66)
Σ, ∅ `w v : t

Σ,∆ `w qL′.a := t⇒ ∆′ (4.67)

(4.66) yields : ` ∈ L′.
Case distinction over q.

– Case q = @: We can conclude that the update results in a change to the
most recent heap and in a new local environment description where a
strong update happens. The new heap is consistent with the new local
environment description. The expression udf is typed.

– Case q = :̃ S-Wrt changes the property of the object in the summary
heap. The inversion of the judgment `w ensures that the value that is
written to the property has a type that is a subtype of Σ(`)(a). Hence,
heap consistency is ensured after the update. Typing the expression
udf is immediate.
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End case distinction over q.

• Case S-Let′: Inversion of the rule yields

H,H0, let x = s in e′′ −→ H ′, H ′0, E [let x = w in e′′]

H,H0, s −→ H ′, H ′0, E [w]

By induction it holds there exists L′n, A′n and ∆′n such that

Σ,∆′n e (H ′, H ′0, E [w]) : t⇒ L′n, A
′
n,∆

′

which implies

Σ,∆′n, ∅ `te E [w] : t⇒ L′n, A
′
n,∆

′, ∅ (4.68)

From (4.68) we can conclude that the sequence of let and demote expres-
sions building E does type. These typing judgments, the typing rule T-Let,
especially how it propagates its environments, and the fact that the original
configuration is type respecting is sufficient to prove that the new configura-
tion C ′ is type respecting, too.

Corollary 4.5.36 (Extended preservation). For configurations C = (H,H0, e)
and C ′ = (H ′, H ′0, e

′) with C −→∗ C ′ and

Σ,∆ e C : t⇒ L,A,∆′

there exists Ln, An,∆n such that

Σ,∆n e C
′ : t⇒ Ln, An,∆

′

and Ln ∪An ⊆ L ∪A.

Proof. An induction on the length of the evaluation sequence, Theorem 4.5.35
yields the desired claim.

4.5.8 Soundness

Theorem 4.5.37 (Soundness). Let C = (H,H0, e) be a type respecting configura-
tion that fulfills INVcls(C).
Let C = {C ′ | C −→∗ C ′} be the list of reachable configurations from C. All

configurations from C are type respecting and it holds either:

• for all values v there exists no n ∈ N such that C −→n (Hn, Hn
0 , v) or
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• there exists an n ∈ N and a value v with C −→n Cn and en = v and there
does not exists C ′ with Cn −→ C ′.

Proof. The claim follows by induction using Lemma 4.5.32 and Corollary 4.5.36.

Corollary 4.5.38 (Soundness for programs). For a type respecting configuration
C = (∅, ∅, e) that the programmer is allowed to write down, all reachable configu-
rations are type respecting, and either contain a value or can be further evaluated.

Proof. The formulation in natural language is just a direct consequence of Theo-
rem 4.5.37, Lemma 4.5.31 and Corollary 4.2.21.

4.6 Decidability

An interesting property of the type system of JSR is if its logical type system is
decidable; that is to prove that there exists a Turing machine, which decides for
given Σ,∆,Γ, e, t, L,A,∆′,Γ′ if

Σ,∆,Γ `te e : t⇒ L,A,∆′,Γ′

Σ,∆,Γ `s s : t⇒ L,A,∆′

Σ,Γ `w w : t

holds. A necessary, but not sufficient, condition for the decidability of a type
system is the decidability of its auxiliary relations. Especially the subtype relation
is important in this context because it is often the reason for a type system to
become undecidable.

4.6.1 Co-inductive and Regular Types

For well-formed co-inductive types t ∈ Type, as defined in Figure 4.14 and Fig-
ure 4.15, it turns out that the type system is not decidable.

Definition 4.6.1 (Well-formed types). Typewf := {t | t ∈ Type ∧ `wf t}.

The reason for that is that the set Typewf is not countable. Because there is no
bijection between Typewf and N, there cannot exist a Turing machine that decides
any form of relation over types.

Lemma 4.6.2. Typewf is uncountable.

Proof. Let be Location = {0, . . . , 9}. Consider the function T : [0, 1]→ Type:

T (r) := (∅, obj(r1)) −→ (∅, obj(r2)) −→ . . . for r = 0.r1r2 . . .

For each r, r′ ∈ [0, 1], if r 6= r′, then T (r) 6= T (r′). Hence, T is an injective
function. Since [0, 1] is uncountable, Type is uncountable, too.
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types(t) := {t} ∪
⋃
i(types

′(∆i, ti)) t = (∆1, t1)
L,A−→ (∆2, t2)

types(t) := {t} otherwise
types(p) := ∅
types(∅) := ∅

types(r[a : t]) := types′(r, t)
types(∆(` : r)) := types′(∆, r)
types(Γ(x : t)) := types′(Γ, t)
types′(Y1, Y2) := types(Y1) ∪ types(Y2)

Figure 4.29: JSR – definition of the co-recursive function types. types(Y ) com-
putes the set of all types that are part of Y . Y is a wildcard for all elements from
U .

Corollary 4.6.3. The type system of JSR is undecidable.

Proof. As a consequence from Lemma 4.6.2 there exists no finite encoding for all
types.

Due to Corollary 4.6.3 we have to restrict ourselfs to a smaller set of types. As
usual, we restrict the type system of JSR to regular types [100].

Definition 4.6.4 (JSRr). Let JSRr be the regular subset of JSR.

The next paragraphs prove the decidability of JSRr.

Convention 4.6.5. We define the universe U to contain all elements of interest:

U := Type ∪ Reference ∪ HeapType ∪ SummaryEnv ∪ SingletonEnv ∪ TypeEnv

The co-recursive function types : U → 2Type is defined in Figure 4.29. It computes
the set of all types that are part of a structure Y ∈ U .

Definition 4.6.6 (regular type). A type t ∈ Type is regular if types(t) is finite.
The set of regular types is written Typer.

Theorem 4.6.7. The set Typer is countable.

Proof. Obviously, Typer contains infinite many members. Section 4.6.2 provides a
finite representation for each element in Typer in form of a µ-type. That proves
the countability of Typer.

Theorem 4.6.8. The type system of JSRr is decidable.

Proof. The only critical relation for the decidability of JSRr is the subtype rela-
tion. All other relations and functions are defined inductively or by recursion and
are therefore straightforward to implement. Section 4.6.2 presents an inductive
algorithm that decides the subtype relation of µ-types. Hence, a Turing machine
exists that decides the subtype relation for regular types. As a consequence, the
type system of JSRr is decidable.
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Typeµ 3 t ::= obj(p) | (∆, t) L,A−→ (∆, t) | > | udf | µX.t | X
Reference 3 p ::= ˜L | @{`} with |L| ≥ 1

HeapTypeµ 3 r ::= ∅ | r[a : t]

SummaryEnvµ 3 Σ ::= ∅ | Σ(` : r)

SingletonEnvµ 3 ∆ ::= ∅ | ∆(` : r)

TypeEnvµ 3 Γ ::= ∅ | Γ(x : t)

TypeVariable 3 X

Figure 4.30: JSRµ – type syntax. Inductive. The difference between the in-
ductive definition in this figure and the definition from Figure 4.14 is marked in
gray.

tree(µX.t) := tree(t[X 7→ µX.t])

tree((∆1, t1)
L,A′−→ (∆2, t2)) := (tree(∆1), tree(t1))

L,A′−→ (tree(∆2), tree(t2))
tree(t) := t otherwise
tree(p) := p
tree(∅) := ∅

tree(r[a : t]) := tree(r)[a : tree(t)]
tree(∆[` : r]) := tree(∆)[` : tree(r)]
tree(Σ[` : r]) := tree(Σ)[` : tree(r)]
tree(Γ[x : t]) := tree(Γ)[x : tree(t)]

Figure 4.31: JSRµ – function tree for closed types. Inductive.

4.6.2 µ-Types

This paragraph contains a sketch how to map recursive types to µ-types to estab-
lish a connection between JSRr and JSRµ. The presentation is rough because
this mapping is well understood in the literature. For example “Types and Pro-
gramming Languages” [100] explains the concepts in detail in Part IV, Recursive
Types.

Figure 4.30 presents the set Typeµ. We assume the µ-Types are contractive (see
[100] for details). It holds that Typeµ has the same cardinality as Typer. Please
note, that the interpretation of the rules in the version with µ-types is inductive.
Figure 4.31 defines a function tree : Typeµ → Typer by induction. Roughly spoken,
it maps µ-types to recursive types by unfolding the variables. Figure 4.32 presents
the well-formedness relation for µ-types. The only difference between the relation
for µ-types and regular types is that we add two new rules for µ-types and for type
variables. A type t′ ∈ Typeµ is well-formed if it fulfills the relation ∅ `∗wf t

′. For
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A `∗wf > A `∗wf udf A `∗wf obj(p)

A `∗wf ∆1 A `∗wf ∆2 A `∗wf t1 A `∗wf t2

A `∗wf (∆1, t1)
L,A−→ (∆2, t2)

X ∈ A
A `∗wf X

A ∪ {X} `∗wf t

A `∗wf µX.t

A `∗wf ∅
A `∗wf r A `∗wf t a /∈ dom(r)

A `∗wf r[a : t]

A `∗wf ∆ A `∗wf r ` /∈ dom(∆)

A `∗wf ∆(` : r)

A `∗wf Γ A `∗wf t x /∈ dom(Γ)

A `∗wf Γ(x : t)

Figure 4.32: JSRµ – well-formedness types and environments. Inductive.

t′ ∈ Typeµ and t = tree(t′) it holds:

`wf t⇔ ∅ `∗wf t
′ (4.69)

We continue by defining a subtype relation over µ-types (Figure 4.33), such that
for a µ-type t′1, t′2 and ti = tree(t′i), i ∈ {1, 2} it holds:

t1 <: t2 ⇔ t′1 <:∗ t′2 (4.70)

For all other definitions, we just have to adjust the relation that is used when
we are ensuring subtyping between two types. Consider the definition of the flow
relation as an example (Figure 4.34). The only change is highlighted with a gray
box. If we define t <: t′ as a shortcut for t <:∗ t′, we can literally use the definition
of all relations and functions as they were presented and just decide which version
we use by looking at the types. If we use types from Typer, we use the co-inductive
definition restricted to regular types, and if we use types form Typeµ, we will use
the finite representation as µ-types.
From Figure 4.33 we can deduce an algorithm that decides the subtype relation

by following the approach from “Types and Programming Languages” [100].
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ST-Refl
t <:∗ t

ST-Top
t <:∗ >

ST-Obj
L ⊆ L′

obj(qL)<:∗ obj(qL′)

ST-Fun
t1 <:∗ t′1 t′2 <:∗ t2 L ⊆ L′ A ⊆ A′

(∆2, t2)
L,A−→ (∆1, t1)<:∗ (∆2, t

′
2)

L′,A′−→ (∆1, t
′
1)

ST-µLeft
t[X 7→ µ.t]<:∗ t′

µX.t <:∗ t′

ST-µRight
t <:∗ t′[X 7→ µ.t′]

t <:∗ µX.t′

Figure 4.33: JSRµ – subtyping relation. Inductive. The subtype relation for
µ-types shares the first four inference rules with the subtyping relation <: from
Figure 4.16. The relation is extended by two rules (ST-µLeft, ST-µRight) to
handle µ-types.

∀` ∈ L : L `h ∆(`)C∗ Σ(`) ∆′ = ∆\L ↑ L Σ = Σ\L

Σ,∆BL ∆′

` ∈ L ` ∈ L′

L `t obj(@{`})C∗ obj(̃ L′)

t <:∗ t′

L `t tC∗ t′
(∀a ∈ Prop) L `t r(a)C∗ r′(a)

L `h r C∗ r′

Figure 4.34: JSRµ – flow relation for µ-types. Inductive. The difference between
the definition of this figure and the definition of the flow relation from Figure 4.17
is marked in gray.
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The chapter about type inference first proves the decidability of type inference for
JSR. Secondly, it argues that a type inference based on guessing annotations
of new expressions and demote expressions is not feasible, because the annotation
space is to large. Therefore, it sketches an approach based on constraint generation
that is useful in practice.
The prototype implementation of type inference consists of roughly 9000 lines

of OCaml code. It uses a syntax-directed version of the type system to generate
constraints (essentially equality, subtyping, flow, and map constraints, where the
latter constrain the domain of a singleton environment). The solver for these
constraints builds a hyper-graph where variables (e.g. type variables α, location
set variables µ) are vertices and constraints are hyperedges.
The implementation of the inference algorithm is available on the web at http:

//proglang.informatik.uni-freiburg.de/JavaScript/. The implementation
infers the types and locations for all examples presented in our papers [56, 57].

5.1 Decidability

Before we present the type inference algorithm we discuss in this section the decid-
ability of type inference. Before we can discuss the decidability of a type inference
algorithm we define what the task of a type inference algorithm actually is. Please
first recapitulate the syntax definition of JSR (Figure 4.7). One can think of type
inference for JSR as the following:
For a given top expression e, a simple expression s or for a given value v compute

Γ,Γ′,∆,∆′,Σ, t, L,A such that

Σ,∆,Γ `te e : t⇒ L,A,∆′,Γ

Σ,∆,Γ `s s : t⇒ L,A,∆′

Σ,Γ `w v : t

holds.
The definition of the type judgments and their auxiliary relations directly shows

that the computation of these values is not more complicated than type checking
itself. Therefore, it is simple to see that type inference is decidable for JSR, too.
We will not invest a lot of effort in proving this statement, because for practice

a far more important question arises; that is, can we find an algorithm that is
capable of computing the types and the demote expressions with their annotations
for a expression from JSC. So, our central question in this section is, can we infer
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5 Type Inference

additionally to the types, effects and environments the position and annotation of
the demote expressions?
First, we formulate this question more mathematically. For a given expression

e ∈ JSC, does there exits an expression f ∈ JSR with e ∼ f , such that there
exists Γ,Γ′,∆,∆′,Σ, t, L,A with

Σ,∆,Γ `te f : t⇒ L,A,∆′,Γ′ (5.1)

Another difference between expressions from JSC and JSR is that new ex-
pressions are annotated with abstract locations. To infer the annotation of new
expressions is also the task of type inference for expressions in JSC. Hence type
inference, additionally to the traditional task of type inference, has to address the
following questions:

1. What is the annotation of a new expression?

2. Where to insert demote expressions into the expression?

3. What is the annotation of a demote expression?

Question 1 Because the source code of the program is finite, the number of new
expressions of the program is finite, too. If we think about all possible
annotations for these new expressions using the full set of abstract locations
Location, of course there are infinite many possibilities.

But if we are interested in answering the question, if there exists an as-
signment of annotations for the new expressions, such that the program type
checks, we do not need to check all these possibilities. The actual abstract lo-
cation is irrelevant for type checking. The only information of value is, which
new expressions create objects of the same abstract locations, and which will
create different objects. Hence, we can easily define an equivalence relation
over programs that abstract from the concrete abstract locations. Now it is
sufficient for type checking a program, to find an equivalence class, such that
a randomly picked representative from the class does pass type checking, or
to prove that all equivalence classes do not pass type checking. Because the
number of equivalence classes is finite, for decidability we may assume that
we will guess the correct class if it exists.

Question 2 The syntax of JSR does enforce strong restriction about where to
introduce demote expressions. Our first step is to put around each let ex-
pression a demote expression with an unknown location set. It is sufficient
to only put one demote expression there, because of the following obvious
law:

(e\L2)\L1 ≡ e\L1∪L2

The equivalence relation ≡ means there exists n,m, such that if we perform
n steps on the left side, we will end in the same configuration, as if we execute
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m steps on the right side. For these two expressions, obviously it holds that
for n = 2 and m = 1 the desired configuration is found, because it holds:

(H,H0, (e
\L2)\L1) −→2 H ′, H ′0, e

′

(H,H0, e
\L1∪L2) −→ H ′, H ′0, e

′

Reconsidering the type judgment also leads to the insight, that if the right
side of the equation is not typeable, then the left side is also not typeable.
Hence, for type inference, we do not have to introduce two demote operations
that are directly nested. From this fact we can conclude, that the number of
possible places to insert demote expressions is also finite.

Question 3 Because the set of abstract locations of a program with already anno-
tated new expressions is finite, and because all possible positions of demote
expressions is finite, we just have to guess for each of the demote expressions
a set of abstract location L ⊆ Location∗.

Hence, the decidability of type inference depends only one the question, whether
we can compute the type and the environments for a given program that is fully
annotated; that means, its new expressions are annotated and suitable demote
expressions with abstract location sets are inserted, too.
Because for µ-types the subtype relation is decidable, and because the logical

type system is syntax directed, we can conclude that type inference is decidable,
too. The argument exactly follows the argumentation proving that type inference
for the simply typed lambda calculus is decidable.
We will not follow this path any further because the approach of guessing the

annotations does not lead to an algorithm that is useful in practice.

5.2 Complexity of Annotation Inference

In the implementation we cannot rely on some oracle guessing the correct assign-
ments to all the constructor calls. The reason why that is not possible is easy, there
exists too many different possibilities to assign abstract locations to constructors.
Let us consider a program with N new expressions. For such a program, the

set of abstract locations is at most the interval [1, . . . , N ]. To find a tight lower
bound for the possible assignments, we have to think about a clever way of picking
abstract locations for the different new expressions.
Obviously, it does not make sense to choose any other abstract location than 1

for the first new expression. But for the next, we can consider the 1 another time,
or we can pick the 2. For the third, we have either already picked 1, 1 or 1, 2. If
we picked 1, 1, it makes sense to choose from the set {1, 2}, if we have picked 1, 2,
we will choose from the set {1, 2, 3}. Hence, if we already have picked x1, . . . , xk
values, we will choose xk+1 from the set [1, . . . ,max1≤i≤k xi + 1].
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A recursive formula F (n) for the number of different possible assignments yields:

F (n) = fn(n)

fn(m) =

n∑
i=1

ϕi(m)

ϕ1(m) = 1

ϕn(m) = ϕn−1(m− 1) + nϕn(m− 1) if 1 < m ∧ n ≤ m
ϕn(m) = 0 if 1 < m < n

where the helper function ϕn(m) takes two arguments and counts how many se-
quences with length m and maximum n do exist, if we have to choose the elements,
such that no number is skipped. Because we are not allowed to skip numbers, we
cannot create a sequence with m elements that does have a maximum greater than
m. Hence, the last case, where m < n yields a zero. The other base case, if the
maximum we are interested in, is 1, yields a count of 1, since there exists only one
sequence of length m with maximum 1, which is 1, . . . , 1︸ ︷︷ ︸

m times

.

The recursive formula ϕn(m) for 1 < m and n ≤ m reduces the computation to
sequences of the length m−1. We can use two different kind of sequences of length
m− 1 and extend them to sequences of length m with maximum n. The first are
the sequences with a maximum of n− 1, the second the sequences with maximum
n. If the maximum is smaller that n − 1, we cannot reach a maximum of n by
adding one number at the end, because we are not allowed to skip numbers. And
if the maximum is greater than n, it will be obviously to large after the extension.
For a sequence with length m − 1 and maximum n − 1, we have to increase

the maximum of the sequence by picking n. Due to the fact, that the number of
sequences of length m − 1 with maximum m − 1 is ϕn−1(m − 1), we will get the
same number of sequences.
The second possibility to create a sequence with a maximum of n and length

m from a sequence of length m − 1 is, we take all sequences that have already a
maximum of n. In this case, we can extend each sequence by a number chosen
from [1, . . . , n]. For this case, n ·ϕn(m−1) yields the number of possible sequences.
The nice thing with these two parts is, that they are disjoint. Hence, we can

easily add up the two parts in our formula to compute ϕn(m). See Table 5.1 for
some computed values.
Will it be a practical approach to just try out all possibilities in an implementa-

tion? To answer this question we have to discuss how the function F is growing by
presenting a closed function F ′, such that F ∈ Θ(F ′). But this complicated search
is not necessary, since it is very easy to find a lower bound that is growing too fast
for the brute force approach. Consider the following sequences (for an even n)

1, 2, 3, . . . ,
n

2
, x1, . . . , xn

2
.
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F (n) ϕn(m)
m
1 2 3 4 5 6 7

1 n = 1 1 0 . . .
2 2 1 1 0 . . .
5 3 1 3 1 0 . . .
15 4 1 7 6 1 0 . . .
52 5 1 15 25 10 1 0 . . .

203 6 1 31 90 65 15 1 0
877 7 1 63 301 350 140 21 1

Table 5.1: Number of possible assignments of abstract locations to new expres-
sions.

We will choose the xi from the set [1, . . . , n2 ]. This yields sequences of length n with
maximum n

2 , which are all valid sequences with respect to the restriction discussed
above. The number of sequences can be easily computed with the formula:

F ′(n) =
(n

2

)n
2 (5.2)

Obviously this is a lower bound we cannot accept in a setting of trying out all
possible values, even if the number of new expression in a program is only around
1% of all the expressions.

Lemma 5.2.1. For a program with n new expressions, the number of different
possible annotations for these new expressions is F (n).
A lower bound for the recursively defined function F (n) is F ′(n) =

(
n
2

)n
2 .

5.3 A Practical Approach

The last section motivates, why just guessing the abstract locations for new ex-
pressions is not an option. Hence, instead of ensuring that there does not exists a
possible assignment for the abstract locations of new expressions, we will use some
additional information available in JavaScript programs to make type inference
applicable in practice.
There are two different possibilities to create objects in JavaScript.
First, by a new expression. A new expression in JavaScript calls a function and

hence we annotate each function with an abstract label. For the new expression
the annotation label of the function is used to determine the type of the created
object. This approach groups objects with the same constructor into the same
abstract location. Second, object literals are used to create objects. We abstract
each object created by an object literal based on its allocation site. Hence, two
objects created by different object literals are never abstracted to the same abstract
location. An alternative approach for object literals might be to follow an idea used
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by Google Chrome and Firefox to group objects in order to make property read
faster. They create classes for objects such that objects with the same properties
are abstracted to the same class.
Both alternatives for object literals have drawbacks. In rare cases it might be

the case that grouping objects into the same abstract location, just because they
are created by the same constructor might reject a program that is type safe if
the objects are grouped more accurate. Hence, we also allow the programmer to
manually provide the abstract locations at each new expression and object literal
if he needs the additional flexibility.
Consequentially, our type inference algorithm is not complete; that is, if the

type inference algorithm rejects a program, it is not valid to conclude that for all
possible annotations the program is rejected by the type checker.

5.4 Constraint Based System

Figure 5.1 presents the syntax of types, variables and constraints. Type variables
(X) are mapped to types by type inference. During inference we map them to
two types (indicated by [ 7→ t, t]). The first type is a lower bound, the second one
is an upper bound (with respect to the subtyping relation). Location variables
(µ) and precision variables (χ) are mapped to suitable values during constraint
simplification. Object variables (ω) are assigned to maps from properties to type
variables. The singleton environment variables (σ) are assigned to maps from
abstract locations to object type variables. The need for the upper and lower bound
for variables is explained in the section on constraint simplification (Section 5.4.2).
Types in the inference algorithm are from Typei. Typei is the subset of Typec that

contains only finite types (hence Typei is the inductive interpretation of the type
syntax). Together with the type variables this is sufficient to encode all regular
types, similar to the approach followed in Section 4.6.2.

5.4.1 Constraint Generation

The following three judgments

Γ `te e : τ ⇒ µ, σ,Γ | C
Γ `s s : τ ⇒ µ, σ | C

Γ `w w : τ | C

generate the constraints for type inference. They are defined in Figure 5.2 and
Figure 5.3.
Typically, the constraint generation rules call the constraint generation algo-

rithm for all of their parts, create some additional constraints and build a new
constraint by conjunction. Some of the rules need to create new fresh variables,
which is indicated for example by the notation "σ′ fresh" in the rule C-Demote.
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X [ 7→ t, t ] type variable
µ [ 7→ L,L ] location variable
χ [ 7→ q, q ] precision variable

ω [ 7→ Prop
fin−→ X ] object variable

σ [ 7→ Location
fin−→ ω ] local environment variable

τ ::= t | X t ∈ Typei
S ∈ {∈, /∈} basic set operations
Y ∈ {τ, µ, χ, ω, σ} wild-card
C constraints

C ::= τ <: τ subtype
σ, τ C τ flow on type
Σ, σ Bµ σ flow on environment
l S µ set operation on location variable
µ ⊆ µ subset of location variable
µ = µ− µ difference of location variable
Locs(τ) ⊆ µ all pointers part of τ are in µ
µ ∩ µ = ∅ disjoint sets
σ =#

µ σ demotion on local environment variable
X =#

µ X demotion on type variable
ω =#

µ ω demotion on object variable
σ `r X.a : X property read
σ `w X.a :=X ⇒ σ property write
Y = Y equality
C ∧ C conjunction
Ci conjunction
False type error
True or ∅ success

Figure 5.1: Constraint syntax.

C-Undefined

Σ,Γ `w udf : udf | ∅

C-Object

Σ,Γ `w (q`, i) : obj(q`) | ∅

C-Variable
x : X ∈ Γ

Σ,Γ `w x : X | ∅

C-Valuete

Σ,Γ `w w : τ | C1 C2 = τ <: τ ′

Σ,Γ, σ `te w : τ ′ ⇒ ∅, σ,Γ | Ci

C-Values

Σ,Γ `w w : τ | C1 C2 = τ <: τ ′

Σ,Γ, σ `s w : τ ′ ⇒ ∅, σ | Ci

Figure 5.2: Type rules for constraint generation.
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Most of the rules are straightforward (Figure 5.2). Interesting is the rule C-
Function. It creates a fresh type variable X, two location set variables µ and µ′

and a local environment variable σ2. Local environment variables carry a location
set variable to encode the domain of the map. The domain location set variable
of σ2 is named µs, expressed by the notation µs ← dom(σ2). Due to the fact
that JSC and JSR have static scoping, the set of free variables of the function
recf(x).e. is computed statically, which allows to compute Γ′ from Γ by a simple
domain restriction. Then, the constraint generation algorithm calls the algorithm
for constraint generation for top expressions with Γ′ and σ2, yielding the new
variables µ′′, σ1, a type environment Γ′′′ and a set of constraints C5 and the type
or type variable τ .
The three following constraints C1 to C3 express simple restrictions on the lo-

cation set variables. The constraint C4 is build from a set of constraints. For
each x ∈ dom(Γ′) a constraint is generated. These constraints are combined by a
conjunction (expressed by ∧ over the equation sign).
The correctness of the constraint generation is not proved formally, since we

omit also formal definitions for the semantics of the constraints. We decide to
omit them, because the semantic of all constraints is either clear, since we use
basic set operations or logical operations, or the semantics of a constraint is easily
defined by the corresponding relation from the logical type system.

5.4.2 Constraint Solving

Unfortunately, constraint simplification has to deal with negative information like
` /∈ µ. Such a constraint is implicitly generated from σ′ = σ[` 7→ {}]1 in the
constraint generation for new, for example. As a consequence, using a monotone
framework to solve the constraints does not work. Hence, we combine two mono-
tone frameworks where one is collecting positive information like ` ∈ µ and the
other one is collecting the negative information ` /∈ µ. The positive information
raises the lower bounds for location variables (and other variables) and the nega-
tive information lowers their upper bounds. We obtain an initial upper bound for
the location variables by typing the program under a closed world assumption.
Following the constraint generation phase, all constraints are inserted into a

work list and subjected to simplification. Simplifying a constraint can cause one
or more of the following actions:

1. Create a new constraint,

2. Raise the lower bound of a variable,

3. Lower the upper bound of a variable,

4. Remove the constraint from the constraint set.
1The map update requires ` /∈ dom(σ).
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C-Function
X,µ, µ′, σ2 fresh µs ← dom(σ2)

Γ′ = Γ ↓ fv(recf(x).e) Σ,Γ′(x : X), σ2 `te e : τ ⇒ µ′′, σ1,Γ
′′′ | C5

C1 = µs ∩ µ = ∅ C2 = µ′ ⊆ µ C3 = µ′′ ⊆ µ
∀x ∈ dom(Γ′) : C4

∧
= Locs(Γ′(x)) ⊆ µ′ ∧ Γ′′(x) =#

µ′ Γ′(x) ∧ σ1,Γ
′(x)C Γ′′(x)

Σ,Γ `w recf(x).e : (σ2, X)
µ−→ (σ1, τ) | Ci

C-Demote
σ′ fresh C1 = Σ, σ Bµ σ′ ∀x : dom(Γ) : C2

∧
= Γ′(x) =#

µ Γ(x)

Σ, σ′,Γ′ `te e : τ ⇒ µ′, σ′′,Γ′′ | C3 C4 = µ ⊆ µ′ C5 = µ′′ = µ′ − µ
Σ, σ,Γ `te \µe : τ ⇒ µ′′, σ′′,Γ′′ | Ci

C-Let
µs ← dom(σ) Σ, σ,Γ `s s1 : τ1 ⇒ µ1, σ1 | C1 C2 = µs ∩ µ1 = ∅

Σ, σ1,Γ(x : τ1) `te e2 : τ2 ⇒ µ2, σ2,Γ
′(x : τ ′1) | C3 C4 = µ ⊆ µ1 ∧ µ ⊆ µ2

Σ, σ,Γ `te let x = s1 in e2 : τ2 ⇒ µ, σ2,Γ
′ | Ci

C-Function Call
Σ,Γ `w w2 : τ2 | C1

Σ,Γ `w w1 : (σ, τ2)
µ−→ (σ′, τ1) | C2

Σ, σ,Γ `s w1(w2) : τ1 ⇒ µ, σ′ | Ci

C-New
C1 = ` /∈ dom(σ) C2 = σ′ = σ[` 7→ ∅]
Σ, σ,Γ `s new` : obj(@`)⇒ {`}, σ′ | Ci

C-Read
Σ,Γ `w w : τ | C1 C2 = τ = obj(p) C3 = σ `r τ.a : τ ′

Σ, σ,Γ `s w.a : τ ′ ⇒ ∅, σ | Ci

C-Write
Σ,Γ `w w : τ | C1

Σ,Γ `w w′ : τ ′ | C2 C3 = τ = obj(p) C4 = σ `w τ.a := τ ′ ⇒ σ′

Σ, σ,Γ `s w.a :=w′ : udf⇒ ∅, σ′ | Ci

Figure 5.3: Type rules for constraint generation.
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For most cases the simplification rule is straightforward. Let us have a look at the
constraint simplification rule for l ∈ µ:

l ∈ µ → delete, µ := µ ∪ {l}

Executing this rule raises the lower bound of µ (denoted by µ) by adding l. After-
wards µ contains all the information that was expressed by the constraint, so the
constraint itself is deleted.
The operation ∪ for a location variable does some additional things. First, it

checks if l is not contained in the upper bound of µ, denoted l /∈ µ. If that is the
case, then the constraint l ∈ µ is not solvable because it contradicts the already
computed upper bound. Second, if the lower bound of µ changes (viz., if µ did not
contain l before the update), then every constraint which depends on µ is added
to the work list.
Another, more complicated example is the simplification of a read constraint.

Let us assume we have
σ `r ξµ1.a : α

and that µ1 = {l1} and µ1 = {l1, l2, l3}, the precision variable ξ = @, σ(l1) = o1,
o1 = []. The constraint simplification finds that ξ is equal to @ and that implies
that only one location is allowed for µ1. Because the lower bound of µ1 contains
one element, simplification sets µ1 = {l1}. After changing µ1 every constraint that
depends on µ1 is added to the work list. In particular, the read constraint is visited
once more, because it depends on µ1.
The next visit notices that µ is equal to a location, and that the precision variable

is set. Hence, σ(l) contains information about the shape of the object. Reading the
property a of the object enforces that the object has a property that is a subtype
of α. Hence, simplification extends o1 = [a 7→ αa] and generates a new constraint
αa<:α. If one of these operations is not allowed the constraint False is generated,
which terminates constraint simplification immediately and rejects the program.
Of course, the newly generated subtype constraint is added to the work list, as
well as each constraint that depends on o1.
The algorithm considers many other cases. Discussing them does not lead to

additional insights. Correctness of the transformation is typically straightforward
to see. Hence, the only reason to present all simplification rules is to prove a com-
pleteness result for contraint simplification. But such a proof is not of much value
in our situation. The inference algorithm is not complete because of the heuristic
used to infer annotations for new expressions and object literals. Experience with
our prototype implementation indicates that the combination of two monotone
frameworks enables the algorithm to collect sufficient information to infer a valid
typing.
Currently, the implementation is not optimized for speed. For example, it prop-

agates the structure of the most recent heap to every program point. A possibility
to make the algorithm faster by reducing the amount of data computed is to use
lazy propagation [41, 65].
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This chapter discusses how to extend the formal system of Chapter 4 with expres-
sions and statements of JavaScript that are not part of the calculus. Section 6.1
presents an extension to support functions with multiple parameters. Next, in Sec-
tion 6.2, we present two approaches to include conditionals into the calculus. An
aspect of JavaScript that is special to the language is its realization of inheritance.
It turns out that the recency-aware calculus can easily be extended to support the
prototype mechanism of JavaScript (cf. Section 6.3).

6.1 Multiple Parameters

Functions in JSR take only one parameter. To simulate functions with two pa-
rameters, the most common approach is to define a shortcut:

λxy.e ::= λx.λy.e

But this approach does not work well in our recency-aware calculus, because the
calculus used a modified substitution. Consider the following example:

let o = newl1 in
let p = newl2 in
let f = λxy. x.a := y in
f o p

In this example f has two parameters and the programmer assumes that passing
precise object references to functions by parameters is allowed. But after applying
the shortcut, the code extends to:

let o = newl1 in
let p = newl2 in
let f = λx. λy. x.a := y in
f o p

Hence, x is a free variable in λy. x.a := y, and the modified substitution will replace
x not by (@l1, 0) but with (̃ l0, 0) during evaluation of the example. To avoid
this problem we can introduce tuples in our system and pass multiple function
parameters to the function as a tuple. We define a shortcut:

λx.e ::= λt.e[xi 7→ ti]

where x := x1, . . . , xn, t is a tuple and ti is code to access the i-th component of t.
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We can choose to simulate tuples by objects with specific property names for
the different components. The benefit from that approach is that the extension
of the static type system is just syntactic sugar. For example, the function type
(∆, (int, int)) → (∆, int) is a shortcut for (∆, obj(̃ `)) → (∆, int) with Σ(`) =
(fst : int)(snd : int). The code to implement the lookup for the first component
is x.fst.

6.2 Conditionals

6.2.1 Conditionals in JSC

The integration of conditional expressions into JSC is simple. We extend the
syntax from JSC (c.f. Figure 4.1) by a new expression:

s ::= . . . | if w s s

The condition of the conditional expression is either a value or a variable. To
support only variables and values as conditions is not a restriction, because a
programmer can branch on the result of an arbitrary computation by using a let
expression in front of the conditional. We extend substitution (Figure 4.3):

(if w s1 s2)[xi 7→ v] = if w[xi 7→ v] s1[xi 7→ v] s2[xi 7→ v]

We also extend dynamic semantics (c.f. Figure 4.4) by the two rules:

S0-IfT H, if v s1 s2 →0 H, e1 if v 6= udf

S0-IfF H, if udf s1 s2 →0 H, s2

They define that the conditional evaluates to either the “then” branch, or the “else”
branch, depending on the value of the condition. If the value is a “falsy” value (in
our calculus udf is the only “falsy” value), the “else” branch is chosen (S0-IfF),
otherwise (S0-IfT) evaluation continues with the “then” branch. The heap does
not change in both rules. If the calculus is also extended by other primitive values,
for example boolean values or strings, a rule

S0-IfC H, if v s1 s2 →0 H, if v′ s1 s2 if v not a boolean value
and v →b

0 v
′

is used to convert the value v into a boolean value v′ according to a conversion
relation →b

0. In this case, the side conditions of S0-IfT and S0-IfF will change
into v = true and v = false, and it will hold for example that udf →b

0 false.
For the converting relation →b

0 it should hold that:

∀x : x→0 y → y = true ∨ y = false

This is a way to model the automatic value conversion of JavaScript in the core
calculus JSC, while we do take the details of the conversion into account.
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6.2.2 Conditionals in JSR

We extend the syntax of JSR in the same way as in JSC

s ::= . . . | if w s s

and extend the dynamic semantics similarly:

S-IfT H, if v s1 s2 −→ H, s1 if v 6= udf

S-IfF H, if udf s1 s2 −→ H, s2

It is also necessary to define demotion

(if w s1 s2)\L := if w\L s\L1 s\L2

and substitution

(if w s1 s2){x Z⇒ v} = if w{x Z⇒ v} s1{x Z⇒ v} s2{x Z⇒ v}

for conditional expressions.
The most critical question is, how to define the type rule for the conditional.

There is a large design space here, because the condition adds nodes to the control
flow graph in such a way that there is a join of multiple edges. Care must be
taken here to ensure that the important invariant INVH is still valid. The easiest
possibility to model the conditional is to be restrictive:

T-IfR
Σ,Γ `w w : tv ∀i ∈ {1, 2} : Σ,∆,Γ `s si : ti ⇒ L,A,∆ ti <: t

Σ,∆,Γ `te if w s1 s2 : t⇒ L,A,∆,Γ
(6.1)

This rule ensures that the structure of the most recent heaps of the two branches
are the same. Of course this yields a sound system, but maybe it is too restrictive.
For example it forbids most recent objects to escape one branch of the conditional.
It is possible to create new objects – even with different abstract locations – inside
of the conditional branches, but they must be demoted before the conditional is
finished.
As an example consider Program 6.1. In this program the two branches of the

conditional create different objects, and the result is bound to the variable x. Due
to the demote expressions the new objects are returned old, resulting in a situation
that x has the type obj(̃ {l1, l2}). If the programmer initializes the two objects
independently from each other completely inside the conditional branches, the type
rule T-IfR is perfectly fine and works as expected.
But what happens, if the program attaches a new method after the execution of

the conditional? The method attachment will not pass the type checker, because
changes to the shape of old objects are not supported by JSR and it is not possible
to keep the object most recent after the conditional, if the rule T-IfR is used to
type conditional expressions.
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Program 6.1 JSR – conditionals.

1 let c = · · · in
2 \{`1,`2} let x =
3 if c
4 let tmp = new`1 in \`1 tmp
5 let tmp = new`2 in \`2 tmp
6 in
7 x

Thus, our goal is to find a solution that keeps the objects longer most recent1,
even if they are created in different conditional branches with eventually different
shapes. A first consequence of removing the demote expressions is that the variable
x needs a type that subsumes obj(@`1) and obj(@`2). In the current type language
of JSR the only supertype that fulfills the requirement is >. Since this results
in a situation, in which the programmer is unable to use the variable sensibly,
the type language of JSR needs to be extended by union types of most recent
objects. Only with union types it makes sense to support the typing of conditional
expressions in such a way that most recent objects may escape the subexpressions
of the conditional expression. The type of the variable x is obj(@{l1, l2}) in such
an extended system if the demote expressions are omitted.

6.2.2.1 Unit Types of Most Recent Objects

In the following paragraphs we create a system that supports the union of most
recent objects. As a consequence, the example in the previous section (without
the demote operations) will pass the type checker, and the type of the variable x
is obj(@{`1, `2}).
The type syntax from Figure 4.14 is extended by

p ::= · · · | @L

to express an union type over most recent objects. To support union types of most
recent objects, please consider the inference rule

ST-Obj
L ⊆ L′

obj(qL)<: obj(qL′)
(6.2)

from Figure 4.16. Since the type syntax is extended to contain precise object types
with location sets that are no singleton sets the rule becomes more powerful by
expressing that obj(@{`1})<:obj(@{`1, `2}) holds. Hence, without any additional
adjustments it seems now possible to type the variable x in the example with the

1Hence, there will be no demote expressions in the conditional branches.
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precise union type obj(@{`1, `2}). But, at a second look, the type rule T-IfR is
also restrictive with respect to the structure of the most recent heap. The rule
demands for two equal most recent heaps for the two branches of the conditional
expression.

6.2.2.2 Heap Alternatives

Even if union types over most recent objects allow to express that a variable may
contain a most recent object of an abstract locations L, the type rule for a condi-
tional expression needs additionally a way to handle the case that the structure of
the most recent heap is different for the different parts of the conditional. Hence,
a way to combine different most recent heap structures is needed. For this purpose
we introduce heap alternatives. We extend the syntax of most recent heap types
by:

∆ ::= · · · | ∆ ‖ ∆

Heap alternatives express that the most recent heap may either have the structure
provided by the left most recent environment, or given by the right most recent
environment. With these two syntax extensions the type rule for conditionals

T-If
Σ,Γ `w w : tv ∆1,∆2 `J ∆′

∀i(ti <: t ∧ Σ,∆,Γ `s si : ti ⇒ Li, Ai,∆i)

Σ,∆,Γ `te if w s1 s2 : t⇒ L1 ∪ L2, A1 ∪A2,∆
′,Γ

(6.3)

supports the escape of different most recent objects from the different branches of
the conditional expression. If the two conditions Σ,∆,Γ `te ei : ti ⇒ Li, Ai,∆i for
i ∈ {1, 2} are fulfilled, each branch of the conditional has an access effect Ai, an
allocation effect Li, a new most recent environment ∆i and a return type ti. The
return type of the conditional is a super type of the type of the two branches, which
is ensured by ti <: t. The two effects are just combined by the union operation.
Combining the most recent heap environments is delegated to the relation

∆1,∆2 `J ∆′, which is defined in Figure 6.1. The first two rules states that
the join of a environment and an empty environment is just the former. A more
complicated situation arises if both environments contain objects. The next rule
defines how to merge environments if one of them contains an object that the other
one does not contain; that is, if the domain of the two environments is not equal.
The objects that are part of one of the environments are not modified. They are
collected inside the heap alternatives. The merge relation ensures that it holds for
all ∆1 ‖ ∆2:

∆1 ‖ ∆2 → dom(∆1) ∩ dom(∆2) = ∅ (6.4)

Objects for which both environments contains entries are treated by computing
the smallest supertype for each property. That is done by the last rule of the merge
relation.
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∆, ∅ `J ∆ ‖ ∅ ∅,∆ `J ∆ ‖ ∅

dom(∆1) 6= dom(∆2)
dom(∆1) 6= ∅ dom(∆2) 6= ∅ L = dom(∆1) ∩ dom(∆2) ∆′2 = ∆2 ↓ L

∆′1 = ∆1 ↓ L ∆′′1 = ∆1 ↑ L ∆′′2 = ∆2 ↑ L ∆′1,∆
′
2 `J ∆M

∆1,∆2 `J ∆M (∆′′1 ‖ ∆′′2)

dom(∆1) = dom(∆2) 6= ∅ l ∈ dom(∆1)
∆1 ↑ {l},∆2 ↑ {l} `J ∆ (∀a ∈ Prop) (∆2(l)(a) <: r(a)) ∧ (∆1(l)(a) <: r(a))

∆1,∆2 `J ∆(l : r)

Figure 6.1: Joining the most recent heap.

Σ,∆ `@
w L.a := t⇒ ∆′, 1

Σ,∆ `w @L.a := t⇒ ∆′

∅ `@
w L.a := t⇒ ∅, 0

∆ `@
w L.a := t⇒ ∆′′, n ` ∈ L

∆(` : r) `@
w L.a := t⇒ (` : r[a 7→ t])∆′′, n+ 1

∆ `@
w L.a := t⇒ ∆, n ` /∈ L

∆(` : r) `@
w L.a := t⇒ ∆, n

∆1 `@
w L.a := t⇒ ∆′1, n1 ∆2 `@

w L.a := t⇒ ∆′2, n2

(∆1 ‖ ∆2) `@
w L.a := t⇒ (∆′1 ‖ ∆′2),max(n1, n2)

Figure 6.2: Extension – writing properties with heap alternatives.

To handle union types over most recent objects sound, all auxiliary relations
handle the heap alternatives specially, for example the environment ∆(`1 : []) ‖
(`2 : []) does only support the synchronous demotion of `1 and `2. It is not allowed
to demote the `1 object without the `2 object, because there may be a union type
of the form obj(@{`1, `2}). The following paragraphs will explain all the necessary
adjustments to the auxiliary relations in detail.
The relation `w takes the global heap environment Σ, the most recent environ-

ment ∆, a reference type p = q`, the property a and the type of the right hand
side of the assignment t and relates them to a new most recent environment if the
assignment is valid.
The original version of the relation is defined in Figure 4.25. There are two cases

handled by the original relation. The first rule handles the case, where p = ˜L.
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A write access is only allowed if the type that should be stored inside the object
property is a subtype of all the property types. Hence, the condition t<:Σ(`)(a) is
enforced for all ` ∈ L. The second rule deals with the case of most recent objects.
It supports strong updates, which means, it allows the write access and adjusts
the type of the corresponding object type inside of ∆. In the base case, where
L contains only one element and ∆ is a mapping from abstract locations to heap
types, the adjustment is straight forward.
Because of union types over precise objects and heap alternatives the relation

is extended. An additional rule in Figure 6.2 delegates the work needed in such
a situation to another relation `@

w , which supports strong updates for most recent
objects. Because a strong update is only sound if for each heap alternative one
object is changed, the relation computes the number of adjusted objects per alter-
native and returns is maximum. Since the heap alternatives ensure that only one
of the alternatives is relevant during an execution, it is a valid operation to allow
strong update on different objects if they exists in different alternatives. Hence,
the rule dealing with the heap alternatives (the last one) computes the number of
object changes using the formula max(n1, n2), while in the other rules the number
is increased if necessary.
The relation `w requires n = 1. This condition is essential for the soundness

proof, because it allows to prove that the type change of a property write only ef-
fects one object, and that only one object description in ∆ that has a corresponding
object in the heap is changed. All the other changes are performed to heap alter-
natives that are dead in the sense that for their changed object descriptions there
exists no object in the actual heap. Therefore, even with heap alternatives and
union types over most recent objects, a one-to-one relation between abstractions
and object can be established.

6.3 Prototypes

It is fairly straightforward to extend JSR with a JavaScript-style prototype mech-
anism. Figure 6.3 defines the calculus JSR′ as an extension to syntax, operational
semantics, and typing of JSR. JSR′ has an enhanced version of object creation,
new`(v). Its reduction rule S-New′ initializes a reserved prototype property _p of
the new object to v. This property must not be used in user code.
The read reduction rule S-RdI replaces the S-RdE rule in Figure 4.8. The read

operation first examines the value v obtained by reading the property directly from
the object itself. It returns v if v 6= udf. Otherwise, if a prototype is defined for
the object, it delegates the lookup to the prototype. If the property is undefined
or the prototype is not an object, the read operation returns udf.
The revised typing rule for new installs the prototype argument in the newly

created object. The prototype argument is an arbitrary value. The rule T-Read′

ensures that if the property read follows a prototype chain, all accessed locations
are added to A by using the relation Σ,∆, A `a p, a instead of A `a p. The
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extended relation collects not just the one abstract location p, if p is a precise
reference, but it also collects all most recent abstract locations used inside the
prototype chain.
All other typing rules remain the same, but the auxiliary judgment to read a

property needs to be revised. It mimics the operational semantics in descending
the prototype chain of the object, returning the value when the property is found,
and recursively reading the prototype if no value exists.
Writing of a property is not affected by prototypes, because the write operation

only affects the top-level object and ignores the prototype chain [32].
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Additional syntax

e ::= · · · | new`(v)

Additional reductions

S-New′ H,H0, new
`(v) −→ H,H0[(`, j) 7→ {_p 7→ v}], (@`, j)

if dom(H0) ∩ {`} × N = ∅
and (`, j) /∈ dom(H)

S-RdI H,H0, (p, i).a −→ H,H0, read(H,H0, (p, i), a)

read(H,H0, (p, i), a) =


v if v 6= udf

(q, i).a if v = udf ∧ pt = (q, i)

udf otherwise
where pt = (H,H0)(p, i)$_p

v = (H,H0)(p, i)$a

Changes in the static semantics

T-New’
∆,Γ `c ` ` ∈ dom(Σ) Σ,∆,Γ `w v : t

Σ,∆,Γ `s new`(v) : obj(@`)⇒ {`},∆(` 7→ {_p 7→ t}),Γ

T-Read’
Σ,Γ `w w : obj(p) Σ,∆ `r p.a : t Σ,∆, A `a p, a

Σ,∆,Γ `s w.a : t⇒ ∅, A,∆

t <: t′

(∀` ∈ L) Σ,∆ `r ˜̀ .a : t

Σ,∆ `r ˜L.a : t′
(Σ,∆)(p)(a) = t 6= udf

Σ,∆ `r p.a : t

(Σ,∆)(p)(a) = udf

(Σ,∆)(p)(_p) = obj(q) Σ,∆ `r q.a : t

Σ,∆ `r p.a : t

(Σ,∆)(p)(a) = udf

(Σ,∆)(p)(_p) 6= obj(p′)

Σ,∆ `r p.a : udf

A `a p (Σ,∆)(p)(_p) = obj(q) Σ,∆, A `a q, a
Σ,∆, A `a p, a

A `a p
(Σ,∆)(p)(_p) = obj(q) Σ,∆, A `a q, a

Σ,∆, A `a p, a

A `a p
(Σ,∆)(p)(_p) = udf

Σ,∆, A `a p, a

Figure 6.3: Extension to support prototypes.
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7 Related Work

Jones and Muchnick [68] first use allocation points for abstracting heap struc-
tures and the per-program-point approximation of the heap. They utilize the
information for program optimization, for example to find a more efficient storage
allocation scheme for a LISP-like programming language.
Chase and coworkers [18] invented the notation of strong updates. Their analysis

relies on complex rules involving a per-program-point “storage shape graph”, and
no correctness argument is given. This dissertation reduces the storage shape
information to the (per-program-point) singleton environments, and it provides a
soundness proof.
Our type system is related to must-alias analysis [3] and uniqueness typing [16].

Our summary type for old objects obj(̃ L) expresses may-alias information. Our
type for most recent objects expresses that all variables of this type refer to the
same object. Uniqueness on the other hand guarantees that some variable holds
the only reference to a heap object. Object names from the system of Altucher
and Landi [3] also refer to most recent allocated objects. Hence, we can repsond
positive to a question raised in previous work [64]: Their initial approach can be
extended to a higher-order language.
Balakrishnan and Reps [9] present an analysis called “Recency-Abstraction for

Heap-Allocated Storage”. They aim to optimize dynamic dispatch in C++ binaries
to static function calls where possible. They formalize and implement their system
based on abstract interpretation. Contrary, our work is based on a type system
and we present a constraint-based inference algorithm.
In their work “Alias Types” Smith, Walker and Morrisett [111] design alias types

as an extension of linar types for typing low-level languages. In contrast to our re-
cency aware calculus, their type system is designed for consumption by a machine,
not by a human. Their calculus models object initialization with type changing
assignments to heap records. Alias types separate pointer types from the actual
store contents. A pointer has a singleton type ptr(l), where l stands for a store
location.
The work “Alias Types for Recursive Data Structures” [117] covers also the

treatment of recursive data structures, for example the type system is capable of
encoding cyclic and doubly-linked lists and trees. Their system relies on existen-
tial quantification to specify recursive data structures. Explicit pack and unpack
operations are needed for existentials and for recursive types. In contrast, our
precise pointer type obj(@`) is a singleton type standing for a location at a par-
ticular program point. Our obj(̃ L) type has an existential-type flavor and it can
model recursive data structures because we support types of infinite height due to
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the co-inductive interpretation of the type syntax. Our demote operation corre-
sponds to packing. Furthermore, the alias types system is a prescriptive, explicitly
typed calculus with decidable type checking, whereas our calculus is descriptive,
implicitly typed, and has type inference.
Cqual [41] is a tool for specifying and inferring flow-sensitive type qualifiers in C

programs, which is related to typestate inference. Cqual at first performs a flow-
insensitive type, alias, and effect analysis. Then, it infers linearities, which it uses
to perform strong updates on assigned type qualifiers. Cqual differs in a number
of technical aspects from our work, one point being that our store abstraction can
always handle one reference per abstract store location exactly (linearly in Cqual
terminology) as well as many summary reference at the same time whereas Cqual
classifies a store location as either linear or non-linear. Cqual’s use of polymor-
phism is similar to our notion of store splitting, which is explained in Chapter 6.
Fähndrich and Xia’s delayed types [35] also provide a means of treating object

initialization. An object with a delayed type does not have to fulfill its invariants,
yet. The example in their paper is type checking not-null types. Our calculus could
be put to use for a similar analysis; at present, with delayed types the programmer
provides an explicit boundary when the invariants must hold, whereas our calculus
tracks exact information about an object as long as possible and reverts to less
precise summary information when unavoidable.
Richards and coworkers [107] state that after an initialization phase the shape

of objects changes in a lot of JavaScript programs. They define the initialization
phase of objects created by a constructor function as the time that is spend in
the constructor. Their definition of the object initialization phase differs from
the initialization phase of a recency aware type system. In such a system the
initialization phase is the time until the next constructor call with the same ab-
stract location. Hence, the type system can keep the object much longer in its
initialization phase than the work of Richards et. al. assumes. A consequence is
that their data [107] does not imply the non-existence of an initialization phase in
JavaScript programs. We expect that the recency attribute holds sufficiently long
to cover the initialization phase, but further investigation is required to confirm
this expectation.
Liang and coworkers [77] measure how good an abstraction based on recency is

compared to other alternative, as for example k-CFA. Their main result is that
recency offers the best tradeoff between precision and size. Of course care must be
taken to blindly transport their results to our target language, because they mainly
analyze Java programs, while our type system has the intention to fit JavaScripts
needs.
Kehrt and Aldrich [70] explore an imperative variant of Abadi and Cardelli’s

object calculus with delegation, linear object types, and linear methods. As long
as objects have a linear type, their method suite and delegatee can be changed as
typical in an initialization phase. Later on, the programmer can drop linearity of an
object at the price of making it immutable. Recency can achieve similar objectives
without requiring the object to be linear and without making it immutable. The
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object loses its special status only when the next object is allocated at the same
abstract location.
Anderson and coworkers [4] define a flow-sensitive type system for JavaScript.

They present a type inference algorithm for their type system. It extends record
types by a precision indicator on each record component. The latter distinguish
whether a record component is definitively initialized or whether it may be unini-
tialized. Hence, the indicator separates types that contain a undefined component
from those that do not contain an undefined component. Compared to our work,
they do not model type change and they do not consider prototypes. Our imple-
mentation can type check all examples in that work. We have not been able to get
meaningful results from their implementation, which precludes further comparison.
A similar idea is the basis for Qi and Myer’s masked types [102]. Their typestate-

based system tracks the initialization of objects in a Java core language. A mask
type C\f describes an instance of class C that contains a field f which might not
be initialized. The type system of masked types ensures that a partially initialized
object is not accepted if a fully initialized object is expected. For the initialization
of cyclic data structures the work presents conditionally masked types. For such
cyclic data structures the system rely on annotations. Our system handles cyclic
data structures without annotations.
In his work “Towards a Type System for Analyzing JavaScript Programs” [114]

Thiemann proposed a type system for JavaScript that focuses on the detection
of “undesirable conversions”. We present an example for such a conversion in
Section 2.3. The work is complementary to this thesis, because the type system
that models type conversions is not flow-sensitive.
Jensen and coworkers [66] have built a static analyzer based on abstract interpre-

tation for most parts of the JavaScript language. This system is based on recency,
context sensitivity, and some other techniques to obtain precise results. That work
is complementary to ours because it is a practical implementation, which is not
supported by a formal proof. Moreover, it suffers from the restriction of all ab-
stract interpretation-based systems that it only affirms that a particular program
does not misbehave on a given set of inputs. Thus, unlike our present system, it
cannot compute a function type that describes the set of admissible inputs.
To no surprise all static works do not support dynamic features. For example

the eval function is not supported in a satisfactory way. The same problems arises
with the with-statement.
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Part II

JSConTest – A Dynamic Tool
Based on Type Contracts and
Access Permission Contracts
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8 A Tour of JSConTest

Increasing the quality of software is a challenging task, especially if it concerns
software written in JavaScript. JavaScript is a language that seems easily under-
standable in the beginning, but which has a lot of sharp edges that make it a
challenge to reason about.
In the first part of this work the static approach tackles some problems that arise

during day to day work with the language, and presents a static type system, that
is able to solve some of them. The system provides some excellent guarantees, for
example it ensures that no null pointer exception happens during the execution of
a program that passes the type checker.
The static approach has on the other hand some drawbacks, too. One problem is

that the type signatures of functions are typically not easy to understand, especially
for people who are not used to static type systems. Even if the inference of these
signatures can minimize this problem dramatically, the type system has to confront
the programmer with complicated error messages. It is a long way to go until the
static system from the first part will be accepted by the community.
Even more importantly, if a project realized in JavaScript does not need a guar-

antee of the strength of a powerful type system, the situation gets worse. For
example for a large number of online games created in JavaScript it is more impor-
tant to apply an agile development process than investing a lot of time and money
to write games in a fashion the recency aware type system requires. In such a
situation the investment in a static type system will not pay off.
This part of the dissertation therefore concentrates on utilities for JavaScript

projects that are less dependent on exact guarantees for their programs. In these
projects, there is also a need for a better tool support for software development.
An approach targeting these projects has to make different assumptions than the
approach presented in the first part, and it therefore has another focus. In this
setting, it is important that the system is simple to use for JavaScript developers,
easy to understand, and easy to integrate with the existing program infrastructure.
This part of the dissertation presents JSConTest. It is a tool that implements a

contract system for JavaScript with the following features:

• It is based on familiar concepts.

• The system is applicable step by step to already existing projects.

• The system supports the specification of complex properties.

• The system is independent from the browser. It supports all target platforms
of the programming language JavaScript.
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The main idea of JSConTest is that simple type signatures, similar to the ones
used in programming languages provide important information about the functions
and methods they are describing. Often the type signature – together with the
function name – is sufficient information to understand what the purpose of the
function is. JavaScript lacks native facilities to specify type signatures like the one
JSConTest offers, and we believe that using these signatures makes the task of
finding bugs in a JavaScript program much easier.
Instead of proving the correctness of the type signature statically, JSConTest

tries to find counterexamples for these type signatures by automatic random testing
and run-time monitoring. This approach gives up the guarantied promisses of the
static approach, but it grants some useful properties in return.

No Restriction in Style The most important benefit of JSConTest is that the test-
ing approach does not reject programs because they are written in a style
that does not fit the static type system. So a user of JSConTest never has
to tackle the limitations of a static type system. He can write his program
the way he wants, not the way the type system is telling him.

Direct Feedback Loop If a contract is violated either by a manual test, by a ran-
domly generated test case, or because run-time monitoring detects a contract
violation during a program execution in the wild1, the programmer has an
execution at his hand to start debugging from.

Gradual Applicability Like other contract-based systems, JSConTest can be ap-
plied gradually. Starting from a few operations with contracts, it is easy
to add contracts step by step thus gradually specifying larger parts of a
program.

8.1 Type Signatures as Contracts

We introduce JSConTest with some JavaScript examples. The function
isShipmentValid is a predicate which checks whether the object passed as first
parameter is an object representing a valid order in an online shop.

1 /∗c obj → bool ∗/
2 function isShipmentValid(o) {
3 if (x.name && x.address && x.totalprice) {
4 return (x.totalprice > 20 || x.shipment > 0);
5 }
6 return false;
7 }

The function returns a boolean value indicating that the object is valid (true), or
invalid (false). To this end, it checks the existence of the name and the address

1or during the execution of a manual test suite
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and if the total price of the order is already computed. If that is the case, the next
check to perform is, if the total price of the order is larger than 20, or, if that is
not the case, if the shipment charges are larger than 0.
In JSConTest, the programmer can specify the interface of a function or method

by attaching a special comment to the function. For example, the comment
/∗c obj → bool ∗/ defines that the interface of the function isShipmentValid takes
an object as a parameter and returns a boolean value. These contracts are similar
to type signatures, well known in functional programming languages like ML [82],
Haskell [98], OCaml [91], etc.
Of course, the programmer is not limited to such simple type signatures, as

mentioned above. An important aspect of JavaScript is that functions are first-class
values. JavaScript offers function expressions which are useful to create anonymous
functions that should perform a task later on, for example if it is called as an event
handler for a keystroke. Consider the anonymous function (saved in the variable
f) for a contract that is attached to a function expression.

1 var f = function(x,y) /∗c (int,int) → bool ∗/ {
2 return (x != y && 2 ∗ x == x + 10);
3 }
4 var g = function (y) /∗c (int) → (int → bool) ∗/{
5 return function(x) /∗c int → bool ∗/ {
6 return x === y;
7 };
8 };

The contract of the function is a simple type signature which states that the
function is a predicate over two integer values. The type signature of the function
g is a little bit more complicated. The function takes an integer value and returns a
function of type int → bool. Of cause, JSConTest also supports function contracts
in argument position. An example using this facility is the sort function, which
takes an order and an array of integers.

1 /∗c ((int, int) → bool, [int]) → [int] ∗/
2 function sort(leq, xl) {
3 // some sorting function using leq to compare two array entries
4 }

JSConTest offers a suitable contract for each JavaScript type.2 JavaScript’s
object system is flexible and expressive. Hence, the contract system of JSConTest
requires a flexible and expressive way to phrase, what kind of objects a function
takes as parameter. For this purpose JSConTest supports composite contracts.
A composite contract of the form { p1 : c1, ..., pn : cn (, . . .)?} describes an object
with at least properties p1 to pn. The contracts c1 to cn describe the types of the
properties and the optional extension (, . . .)? states that the random generator for
the object may randomly add properties to the object. Since the check method for

2Some examples: string, number.
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Program 8.1 JavaScript – Format a bill.

1 /∗c { items : [ { name : string, price : number, count : int } ],
2 name : string,
3 address : string
4 } → string ∗/
5 function formatBill( o ) {
6 var s = "", i = 0, sum = 0, t = 0;
7 if ( o.name && o.address && o.items) {
8 s += o.name + "</br>";
9 s += o.address + "</br>";
10 for (i = 0; i < o.items.length; ++i) {
11 t = o.items[i].price ∗ o.items[i].count;
12 s += o.items[i].count + " x " + o.items[i].name;
13 s += + "(each: " o.items[i].price") = " + t + "</br>";
14 sum += t;
15 }
16 s += "sum: " + sum + "</br>’’;
17 }
18 }

the object only ensures that the properties p1 to pn exist with a correct contract,
adding additional properties does not affect the checker of the object contract in
any way. To emphasize that the object must not have any additional properties,
JSConTest offers the notation {| pi : ci |}. The check procedure3 for such a
contract ensures that the object does not have a property p with p /∈ ∪i{pi}.
Another composite contract is [c ], which matches arrays, where the entries of the
array matches c. Hence, arrays are considered to be homogeneous in JSConTest,
which is no restriction due to the existence of a contract that matches all values
named top.
The function formatBill (Program 8.1) collects information about a bill and cre-

ates a string representation. In JavaScript it is often the case that instead of
passing multiple parameters to a function, an object with properties is passed to
simulate named parameters. The function formatBill takes ’three named param-
eters’ (items, name and address), the list of items with their prices, names and
counts as an array, the name of the customer and the shipment address. It returns
a string value.
Instead of continuing to introduce JSConTest’s contract language with examples,

the full syntax definition is presented in Figure 8.1. For primitive data types,
JSConTest supports also singleton contracts, which accept only a single value.
Singleton contracts for floats, integers, strings and booleans are specified by writing

3The check function of a contract is a predicate decides for an arbitrary value if it is an instance
of the contract. For more details consider Section 8.1.1

124



8.1 Type Signatures as Contracts

JavaScript primitives
x ∈ identifier, f ∈ float, i ∈ integer, s ∈ string, b ∈ bool,
r ∈ regular expression, prop ∈ property

Primitive contracts
p ::= undf | top undefined, any value
| bool | b boolean values
| string | s string values
| int | i | [i; i] integers, integer intervals
| number | f | [f ; f] floats, float intervals
| obj | fun object, function
| js:x custom contract, JS scope

Composite contracts
c ::= p
| c@numbers | c@strings | c@labels guided random testing
| (d, . . . , d) (→|⇒) d (ap)? functions, ap→ Figure 8.2
| c.(c, . . . , c)→ c (ap)? methods, ap→ Figure 8.2
| {p1 : c1, p2 : c2, . . . , pn : cn(, . . .)?} objects
| {|p1 : c1, p2 : c2, . . . , pn : cn|} objects
| [c] arrays

Annotations
a ::= ~noAsserts | ~noTests | #Tests:i

Dependent contracts
d ::= c | c($i, . . . , $i) | id($i)

Top-level contracts (embedded in JavaScript comments)
t ::= /*c c a∗ ( | c a∗)∗ */

Figure 8.1: Syntax of contracts.

the corresponding literal value. There is also support for intervals of numbers and
integers with the syntax [f; f] or [i; i]. For instance, [0; 1.1] is the float interval
between 0 and 1.1, inclusively. Another primitive contract is a contract of the
form js:x for some JavaScript identifier x. This notation supports custom contracts
written by the user in JavaScript. This can be done easily by writing an object,
that implements two functions, check and generate.4

JSConTest supports not just one contract per function. It is possible to write a
list of contracts to a function by separating the individual contracts by an |. If a
function is attached by a list of contracts, it has to fulfill all of them.

4Consider Section 11.2.2 for more details.
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8.1.1 Requirements on Contracts

Consider for example a function f with a contract int → int. To check this con-
tract, JSConTest generates a random integer value. After that, it calls f with this
value and checks if the return value of the call matches the return contract, which
amounts to checking if the return value is an integer.
The automatic random testing approach to (in)validate the contracts requieres

the ability to generate values for all contracts that may be used in parameter
position of a function contract. For all contracts that are used in result position
of a function contract the system relies on a checking operation for a contract
and a value. A consequence of the functional style of JavaScript is that function
contracts may be used in parameter and result position of function contracts. This
imposes the need to automatically generate functions that fulfill a given function
contract and to check if a function is a valid instance of a function contract.
In general, since all contracts may be used in both positions, JSConTest requires

each contract to provide a random generator and an instance check. The reason
for this requirement can be summarized in the following table:

A → B check requires random generator for A
requires instance check for B

A → B generate requires random generator for B
requires instance check for A

8.2 Guided Random Testing

Often it is useful to modify the random generator of a contract depending on the
situation, in which it is used. JSConTest offers guided random testing to achieve a
modification of the random generator depending on the source code of a function.
It is available for integers (@numbers), objects (@labels) and strings (@strings).
Attaching @number to the contract int modifies the random generator of the

integer contract such that it depends on the constants of the function body the
contract is attached to. Once again consider the function f (page 123) as an
example. Let us assume a programmer has written the function f as follows.

1 /∗c (int,int) → bool ∗/
2 function f(x,y) {
3 if (x != y) {
4 if (2 ∗ x == x + 10) {
5 return "true"; // contract violation
6 }
7 }
8 return false;
9 }

In line 5, the return statement does not return the boolean value true, but the
string value "true", which means the contract of the function is not valid. If
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8.2 Guided Random Testing

JSConTest now tests the contract for the function, it will most likely not reject
the contract, even if it is invalid, because the probability to reach line 5, which will
spot the error, is extremely small (≈ 2−32). The reason is the use of an uniformly
distributed random generator for x and y, and that the condition in line 4 requires
x to be 10.5 JSConTest offers an annotation for integer or number contracts of
the form @numbers, which will increase the probability to find a counterexample
to p ≈ 1

16 .

1 /∗c (int@numbers,int@numbers,int@numbers) → bool ∗/
2 function fut_1(x,y,z) {
3 if ((x∗3+5 == y∗5+4) && (x∗2−1 == z∗9 − 1))
4 return "true";
5 return false;
6 };

The difference to feedback directed testing is, that the values generated by the
random generator does not depend on further runs of the generator [94–96]. Hence,
there is no need to add additional state to the random generator.
Instead of using the uniformly distributed random generator for integers, JS-

ConTest will do a simple static analysis of the body of the function f. In this
body JSConTest finds two numbers (2, 10). Based on these numbers, JSConTest
generates integer values either by using the random generator or by generating an
expression tree (both cases with a probability of 0.5). The nodes in the expression
trees are picked randomly and correspond to the basic arithmetic operations (+,-
,*,/). The leafs are picked from the set of collected numbers {0, 1, 2, 10} or from
randomly generated integers (each case with a probability of 0.5). Whether a leaf
or a node is picked by the algorithm is decided randomly.6

This rather simple approach seems to be tailored to this example. But it turns
out to work in many other situations, too. Here is an example.

1 /∗c (int@numbers,int@numbers,int@numbers) → bool ∗/
2 function fut_1(x,y,z) {
3 if ((x∗3+5 == y∗5+4) && (x∗2−1 == z∗9 − 1))
4 return "true";
5 return false;
6 };

The contract violation is guarded by a diophantine equation, which is difficult to
solve.7 The approach to generate expression trees randomly finds a solution to the
equation in seconds.

5Ignoring the condition in line 3 for this approximation is possible due to the fact, that the
probability of fulfilling the condition is 1− 2−32 ≈ 1.

6The initial probability to generate a node or a leaf is 0.5. The probability to generate a leaf is
raised by each level of the tree by the random generator to ensure termination. For the depth
i the probability to generate a node is p(node, i) = 0.5 ∗ 0.9i.

7In general the task of solving a diophantine equation is not decidable.
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For example, the tree 1 ∗ 10 is generated with probability

P (”1 ∗ 10”) =
1

4︸︷︷︸
node

∗ 1

4︸︷︷︸
∗

∗ 1

4︸︷︷︸
leaf(l)

∗ 1

8︸︷︷︸
1

∗ 1

4︸︷︷︸
leaf(r)

∗ 1

8︸︷︷︸
10

=
1

16384
,

where the factor 1
4 is the probability to generate a tree with a node (1

2 for the
tree, and another 1

2 for choosing a node). The same holds for picking a leaf (1
2 to

pick a tree, and 1
2 for choosing a leaf). If a leaf is generated, two decisions need

to be made. First, a value from the set of collected numbers (1
2) has to be picked,

and second, the correct one has to be chosen ( 1
n , where n is the number of items

in the set of collected numbers). For the example the set of collected numbers
is {0, 1, 2, 10}. 2 and 10 are members of the set, because they are present in the
program source. 0 and 1 are always added to the set of numbers, because they are
important input values for all programs.
There is also a version of guided random testing for strings and objects. Attach-

ing @strings to a contract that generates string values – typically to string – starts
a static analysis searching for string constants in the function body. The strings
are used as an input value for string parameters.
The annotation @labels modifies the random generator for objects. JSConTest

implements it by collecting all property names from the function body. Since
objects in JavaScript are so special, this feature is discussed in more detail further
with another example. Finding the error in the following example using a usual
random generator for objects that does not have knowledge about the function is
hopeless.

1 /∗c obj@labels → bool ∗/
2 function h(x) {
3 if (x && x.p && x.quest) {
4 return "true"; // violation
5 }
6 return false;
7 }

But the annotation raises the probability to generate an object with properties p
and quest, because these two properties are contained in the function body of h.
JSConTest typically finds the defect in less than 10 test cases for this example.

8.3 Monitoring

Every time a function calls another function, and does not satisfy the requirement
the callee imposes, the call itself is the reason for a contract violation. Program 8.2
contains a function g, which calls the function f. The function f expects an integer
parameter. The expression x ∗ "3O" converts the string value "3O" into the float
value NaN. Hence, NaN is passed to the function f, which is a value that does
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Program 8.2 JavaScript – Catching an Error in a String Literal.

1 /∗c int → int ∗/
2 function f(x) {
3 return 2 ∗ x;
4 }
5

6 /∗c (int,int) → bool ∗/
7 function g(x,y) {
8 return (f(x ∗ "3O") == 60); // error
9 }

not fulfill the contract int. Contract monitoring therefore detects the error in the
string constant.
Contract monitoring is a feature of JSConTest which is useful in different sit-

uations. It is possible to monitor all contracts during the execution of a manual
test suite, which make sense due to the fact that a manual test suite typically
contains a set of tests providing a high coverage. During random testing of the
contracts JSConTest activates monitoring to detect software defects that violates
the contract of called functions.

8.4 Dependent Contracts

Function contracts in JSConTest may contain various kind of dependencies. The
parameters of a function may depend on each other.

1 /∗c (int,int) → bool ∗/
2 function comp(x,y) {
3 if ((x == y) && (x < 10) && (x > 1)) return "true";
4 return false;
5 }

The problem with this example is, that only when the same integer value is picked
for x and y, the defect of the function creates an error. Talking about input values,
where two parameters of the same type do have the same value is an important task,
and hence it makes sense to automatically use function contracts that do test these
cases with a high probability. It is enough to attach /∗c (int,id($1)) ⇒ bool ∗/ to
comp to guide the random generator in this direction.
If it is necessary to express more complex dependencies, JSConTest offers

a notation to express that a parameter may depend on another one by using
c($i1, . . . , $in), where the is are the numbers of the parameters on which c de-
pends. For example, the contract /∗c (int, id($1)) → true ∗/ expresses, that if the
comparison operator gets two integer values, which are identical, it should return

129



8 A Tour of JSConTest

ap ::= with L except L access permission contracts
L ::= [P+

, ] | js:x access path language
P ::= x.(Pr)∗. | r access path expression
Pr ::= prop | r | ? | * | Pr∗ property, property set

Figure 8.2: Access permission contracts syntax. For an X, X∗s stands for all
finite lists with separator s and node element X of arbitrary length. X+

s encodes
all finite lists of minimum length 1.

the boolean value true. In general the parameters of a function may depend on
each other as long as the dependencies between the parameters are acyclic.

8.5 Access Permission Contracts

So far, all features of JSConTest concentrate on a value-oriented functional speci-
fication of the behavior of functions. However, in JavaScript a lot of functions not
only have a value oriented functional effect, but they also perform side effects. JS-
ConTest supports access permission contracts to specify, what kind of side effects
a function performs. For example consider the function redirect.

1 /∗c (string) → undf with [window.location] ∗/
2 function redirect(url) {
3 window.location = url;
4 }

The function takes a string parameter and saves it to the property location of
the window object. This operation causes a redirect of the page. Granting all
functions, especially third party libraries, the right to redirect the page is not
welcome. Access permission contracts are a way to inform the contract system
of JSConTest that a function may only manipulate or read a certain part of the
heap. An access permission contract starts with a variable name, followed by a list
of property names, which specify what part is readable and writeable. Figure 8.2
defines the syntax of access contracts.
Often a situation arises, where the programmer would like to express that a

function may change any property of an object, except one. As an example of such
a situation consider a binary tree. A node in the tree is implemented by an object,
that contains three properties left, right and value, where left and right contains
objects representing the subtrees and value contains some value associated with
the tree node. A method that computes balance information for all nodes of the
tree may store the information inside the object structure of the tree in a property
balance for later reuse. The balance of the node is defined as the difference between
the height of the left subtree and the height of the right subtree. The method only
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Program 8.3 JavaScript – Balance of a Binary Tree.

1 /∗c js:tree.() → int with [this./left|right/∗.balance] ∗/
2 function computeBalance() {
3 var lb = 0, // hight of the left subtree
4 rb = 0; // hight of the right subtree
5

6 if (this.left) {
7 lb = computeBalance.call(this.left);
8 }
9 if (this.right) {
10 rb = computeBalance.call(this.right);
11 }
12 this.balance = lb − rb;
13 return max(lb, rb) + 1;
14 }

writes the balance property, while it reads the properties left and right. A vi-
able access contract for a method might be with [this./left|right/∗.balance]. The
regular expression /left|right/ expresses the two alternative property names for
accessing one of the child nodes. Since the method has to traverse the tree to
arbitrary depth, the star after the regular expression grants access to a sequence
of left and right properties with an arbitrary length. Hence for example the path
this.left.right.balance is granted by the access contract. An access permission con-
tract provides write access to all paths that completely match the access permission
contract. But it also grants read access to all paths that are prefixes to a path
described by the contract. Hence, in the example, reading the paths this, this.left
and this.left.right is granted by the access permission contract.
Now, consider the more complicated example Program 8.4, in which a function

should clean up the tree by deleting all temporary intermediate values. Such a
method may be useful, if the tree, without the intermediate values, should be
transferred to the server via an AJAX request. This function needs write access to
all properties, except the properties left and right. Consider the access permission
contract with [this./left|right/∗.?] except [this./left|right/∗.value?.←]. Its first part
provides arbitrary write access to all properties in the whole tree, while the second
part restricts the permitted path such that the method is not allowed to write to
the properties left, right and value. The question-mark behind the property name
value makes it optional.8 Hence, the method may delete all of the intermediate
values stored in the tree, but it cannot change the structure of the tree or change
the value of the nodes. The modifier ← indicates that only the write permission

8Hence, the ∗ stands for zero or more times and ? stands for at most one occurrence. Do not mix
it with the question-mark, that is used to encode an arbitrary property name. For example,
the path x.bla.?? matches x.bla.p and x.bla.
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Program 8.4 JavaScript – Clean a Binary Tree.

1 /∗c js:tree.() → undf with [this./left|right/∗.?]
2 except [this./left|right/∗.value?.←] ∗/
3 function cleanUp() {
4 for (var property in this) {
5 if (this.hasOwnProperty(property) {
6 if (property !== ’left’ && property !== ’right’) {
7 if (property !== ’value’) {
8 delete this[property];
9 }
10 } else {
11 cleanUp.call(this[property]);
12 }
13 }
14 }
15 }

should be restricted. For more details about the way that except works, refer to
the formal definition of access permission contracts (Chapter 9).
Even without having a formal introduction for the access permission contracts

at hand right now, two properties of access permission contracts can be defined.
There is no point to include a path ππ′ in the set of readable paths, if the path

π is not readable. If access to π is restricted, the program will never be able to
access any values through the path ππ′. Hence, a property for access permission
contracts, which we call prefix closedness, is, that for all readable path, all prefixes
of all readable paths are readable. The same argument holds for write access
permission contracts. If an access permission contract grants write access to the
path ππ′, it must also grant read access to π. In the formal specification of the
access permission contracts, these two properties are defined formally in the next
chapter.
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9 Access Permission Contracts

The tour of JSConTest introduces access permission contracts with simple exam-
ples. The meaning of the access permission contracts from the examples is simple.
The first impression after discussion some example might be, that the creation of
an access permission contract system is simple. But it turns out that the design
space it huge, and that there exist many pitfalls. A formalization spots these and
is also a basement for a robust implementation. The interesting cases for a formal-
ization are not the common cases, but the exceptional ones. If functions are called
with aliases, or if the heap contains cycles, it is not always intuitive to decide, what
the access permission contract should grant. We first state six design principles
and discuss each of them in a separate section. Of course, the design principles
for the access contracts should not collide with the properties JSConTest offers.
Especially that JSConTest is partially applicable in software projects is important
in this discussion.
But before stating the design principles, we clarify our hypothesis about what

the mental model of a typical JavaScript programmer might be.
A JavaScript programmer always has to think about his program with respect

to a heap containing all the objects the program works with. The structure of the
heap that the programmer has in mind can be expressed by a graph of objects.
Each object is a vertex in the graph. A vertex contains a table of property names.
For each property, either a primitive value or a reference to another object is
stored. References to other objects are edges to these objects. Figure 9.1 presents
a graphical representation of an example heap. It contains four objects, X, Y, Z and
A. The object A has no properties, the object X has two properties, z and p. The
property z contains a reference to the object Z, which is graphically represented
by an edge to the object. In this graph, the five places that may be affected by an
assignment are marked @i for i ∈ {1, . . . , 6}.1
But in JavaScript side effects occur in two flavors. The first side effect is per-

formed by an assignment of the form o.p = e. It writes the property p of the
object, which is bound to the variable o at the time the expression is executed.
But there is also the assignment of a variable (x = e), which is at first sight some-
thing completely different, because it changes the binding of the variable instead
of the value of a property.
Hence, to discuss side effects our graphical representation needs not only the

heap, but also the variable assignment. Figure 9.2 extends the graphical repre-
sentation with the variable assignments. In this graph, the scope table is also an

1We name the places using the pattern @i to distinguish them from access paths easily. An
alternative name for the place @1 is Z.x or, if the address of the object Z is `z, maybe `z.x.
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Figure 9.1: Heap graph with objects X, Y, Z and A.
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Figure 9.2: Heap graph with objects X, Y, Z, A, and with variables x, y, z, a.

object, with property names equal to the names of the variables. This graphical
representation makes clear that there is not really a difference between a property
assignment and a variable assignment. Both are just an instance of the same oper-
ation – a property assignment. This corresponds to the language specification [59],
in which a variable assignment is just a property assignment of a scope object.

An access path starts with a variable name, followed by a possibly empty list
of property names. It is easy to understand that using this notation every place
that might be affected by a side effect is describable. For example the access path
z.x is equal to the place @1, and the access path x.z.y and z.y is equal to @2 in the
heap presented in Figure 9.2.
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9.1 Design Principles

9.1 Design Principles

We continue by stating the basic design principles of access contracts, which we
believe results in an intuitive, decidable and fast to implement system that fits
well in JSConTest.

Access Granted by Default Principle When no access permission contract con-
trols a read or write access, the access is granted. This principle provides a
fallback, when no access permission contract is in force.

Path-Based Principle The permission to access a property of an object depends
on the path taken to reach the object. Hence, an access permission contract
grants a program the permission to traverse the heap.

Pre-State Snapshot Principle An access permission contract only extends to ob-
jects and paths in the heap at the time the contract is installed.

Last Writer Wins Principle The last write operation to a property determines the
access rights for the descendants of the property.

Dynamic Extend Principle The lifetime of an access permission contract has dy-
namic extend analogous to the life time of a stack frame.

9.1.1 Access Granted by Default Principle

When no access permission contract controls a read or write access,
the access is granted.

The access granted by default principle defines precisely what happens, when the
source code of a program is partially annotated with access contracts. Consider
the function f:

1 // f behaves as f1
2 function f(x) {
3 return x.a;
4 }
5 /∗c top → top with [x.∗] ∗/
6 function f1(x) {
7 return x.a;
8 }
9 /∗c top → top with [] ∗/
10 function f2(x) {
11 return x.a;
12 }

There are two possibilities for the access permission contract system. Either, the
function f behaves like f1. Or, it behaves like f2. In general, by default the access
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permission contract system grants access to all properties of all parameters and
free variables for functions without an attached access permission contract. An
access permission contract system following this approach implements the access
granted by default principle.
If f behaves like f2, the access permission contract system rejects access to all

properties of parameters and free variables for functions without an attached access
permission contract.

9.1.2 Path-Based Principle

The permission to access a property of an object depends on the path
taken to reach the object. Hence, an access permission contract grants
a program the permission to traverse the heap.

The following code illustrates the behavior of a path-based access contract system.

1 /∗c obj → top with [x.a.o, a.b] ∗/
2 function f(x) {
3 return x.b.o;
4 }
5 var o = {};
6 var x = { a : {}, b {} };
7 x.a.o = o;
8 x.b.o = o;
9 f(x);

At the point where the function f is called the heap contains four objects, the one
bound to x, the one bound to o, the one stored in the property a of x, and the one
stored in the property b of x. The property o of a and of b points to the object
o. Therefore, the heap contains two paths from the object x to the object o. The
function f has an access permission contract that grants the right to traverse the
heap via the object a, but in the function body the path via the object b is used.
An access permission contract system based on the path-based principle reports a
violation for the example.
An alternative design is to interpret the access permission contract location-

based. In such a system it is not important which path is used to reach an object.

9.1.3 Pre-state Snapshot Principle

An access permission contract only extends to objects and paths in
the heap at the time the contract is installed.

The pre-state snapshot design principle fixes the heap that is used to interpret the
traversal rights. The only reasonable choices are either the heap at the time when
the access permission contract is installed, or the heap at the time when the read
or write access is evaluated.
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Let us assume a programmer attaches an access permission contract
with [x.a, y.a, y.a.secret] to a function. He expects, that this contract pro-
tects a property secret of x.a, because it is not included in the access permission
contract. With this intention in mind, consider the following example:

1 /∗c ({}, {}) → any with [x.a, y.a, y.a.secret] ∗/
2 function b(x, y) {
3 var tmp = y.a;
4 y.a = x.a;
5 y.a.secret = 42; // allowed?
6 y.a = tmp;
7 }

If the access permission contract system grants a read or write operation with
respect to the heap at the time when the read or write operatrion is evaluated, the
write access to y.a.secret in Line 5 is granted due to the access permission contract
y.a.secret. This behavior is undesired because from the point of view of the caller
of b the function changes the property of the object x.a.secret.
The unintuitive behavior also occurs the other way round:

8 /∗c ({}, {}) → any with [x.a, y.a, y.a.secret] ∗/
9 function b(x, y) {
10 var tmp = x.a;
11 x.a = y.a;
12 x.a.secret = 42; // allowed?
13 x.a = tmp;
14 }

Here, in Line 12, the write access to x.a.secret writes to the property secret of the
object stored at function invocation time in x.a. The access permission contract
system rejects the access if it used the heap at the time, when the read or write
operation is evaluated.
The pre-state snapshot principle ensures that tricking access contracts by intro-

ducing new aliases is not possible once the contract is installed, because all access
paths are evaluated with respect to the heap at the time at which the access
permission contract was installed.

9.1.4 Last Writer Wins Principle

The last write operation to a property determines the access rights
for the descendants of the property.

A consequence of the pre-state snapshot principle is that the access contract system
has to keep track of newly introduces aliases. Aliases which are created before an
access permission contract are not considered. Here is an example.

1 /∗c ({}) → any with [x.a,x.b.a] ∗/
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2 function l(x) {
3 x.a = x.b;
4 x.a.a = 42;
5 }
6 function l1() {
7 var x = { a: {}, b: {}};
8 l(x);
9 }

In this code fragment Line 3 is clearly permitted as x.a may be assigned to and x.b
may be read. The following read access to x.a in Line 4 returns the reference to
the object that was accessible through x.b, when the permission was installed. As
this object was first reached via x.b, the access permission contract for x.b counts
so that the assignment to x.a.a is sanctioned by the path x.b.a. Thus, function l1()
runs without violation!
If we modify the example to create the alias before installing the permission,

then things look different.

10 /∗c obj → any with [x.a,x.b.a] ∗/
11 function m(x) {
12 var y = x.a;
13 y.a = 42; // violation
14 }
15 function m1() {
16 var x = { a: {}, b: {}};
17 x.a = x.b;
18 m(x);
19 }

In this case, running m1() yields a violation. While the first read access to x.a
in Line 13 is sanctioned by x.a, the write access to property a of this object is
not. Indeed, this behavior is consistent with invoking m on an object without any
aliasing, which reports a violation under any semantics.

9.1.5 Dynamic Extent Principle

An access permission contract has dynamic extent.

If a programmer attaches an access permission contract to a function, his inten-
tion is to express, what side effects the function performs. The access permission
contract system regards side effects as property reads and property writes. Hence,
we have to define which property reads and writes are related to a function. As
a first attempt we say, that every property read or property write, that happens
during the function execution is related to the function.
We define now what we esteem as during the function execution. For this discus-

sion it is important that the system under design is a dynamic system. Therefore,
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during does not denote the simple syntax property inside the function body. The
access permission contract system observes only property reads and writes that
the virtual machine executes. There are three different possibilities to define what
we esteem to be during the function execution:

• minimal extent

• dynamic extent

• contagious extent

To illustrate minimal extent consider the following example:

1 function d(x) {
2 if (true) {
3 return x.a; // reads property a of x
4 } else {
5 return x.b; // never executed, not considered
6 }
7 }

Obviously, the read of property a inside of d happens during the execution of d.
For the minimal extent principle, we define during function execution as the set
of all property reads that happen between the call of the function and its return,
for which there is a suitable expression inside the function body. Consider the
following example:

8 /∗c obj → any with [x.a] ∗/
9 function d1(x) {
10 return x.a; // violation if called from d?
11 }
12 /∗c obj → any with [] ∗/
13 function d(x) {
14 return d1(x);
15 }

An access permission contract system with minimal extent does not consider the
property read in Line 10 as during the execution of d because the expression that
performs the property read is not part of the body of d. Hence, an access contract
system based on the minimal extent principle checks at most the properties that a
static system checks, if it analyses the function body without taken care of function
calls.
Next, we present the definition for the dynamic extent principle. It extends

the set of property reads and writes from the minimal extent principle with all
property reads and writes that happen during the execution of called functions.
Hence, because the property read in Line 10 is during the execution of d1 (even in
the minimal extent principle), it also happens during the execution of d, because
d calls d1.
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Based on the dynamic extent principle, a closure returned from a function is not
affected by the access permission contracts in charge during the time, when the
closure is created. But it is restricted with the access contracts that are in effect
at the time, when the closure is called. For example, consider the permission of f
in the following code fragment:

16 /∗c obj → (() → any) with [x.b] ∗/
17 function f(x) {
18 return function() { return x.a + x.b; };
19 }
20 var o = { a: "secret", b: "public" };
21 var r = f(o);
22 r();

The example does not yield a contract access violation because the access to x.a
happens outside of the dynamic extent of the call f(o). The read access which
happens in the last line does not lead to a contract violation, because there is no
access contract in force. Therefore, the access is allowed due to the access granted
by default principle.
A slightly modified version provokes an access permission contract violation.

23 function g(x) {
24 return function() { return x.a + x.b; };
25 }
26 /∗c obj → any with [x.b] ∗/
27 function g1(o) {
28 var r = g(o);
29 r(); // violation
30 }

As before, creating the closure does not lead to a contract violation, but during
the execution of r, g1‘s access contract with [a.b] is in force. Therefore, the access
x.a yields a contract violation.
An access permission contract system that is based on the contagious extent

principle extends the set of property reads and writes by the property accesses
that happens during the execution of closure created inside of the function.

9.1.6 Reference Attachment Principle

Permissions are attached to individual references, not to heap loca-
tions.

To understand the reference attachment principle, think about a function, which is
called with aliased parameters. In such a situation the access permission contract
system can either attach the access permission contract to objects or to references.
Both decisions lead to a reasonable access contract system. We prefer the option

140



9.2 Core Language

to attach the access permission contracts to the references and not to the objects.
To understand the difference consider the following example.

1 /∗c (obj, obj) → any with [x.b,x.a] ∗/
2 function h(x, y) {
3 y.a = 1;
4 y.b = 2; // violation
5 }
6 function h1() {
7 var o = { a: −1, b: −2 };
8 h(o, o);
9 }

In this example the function h is called by the expression h(o,o). Hence, the
function’s two parameters both refer to the same object. If access permission
contracts are attached to objects, the access y.b is not distinguishable from the
access x.b inside of the function h.

9.2 Core Language

In this section we present a formalization of a core calculus. It is a lambda calcu-
lus with imperative objects and a special expression to register access permission
contracts. It is based on the design principles from Section 9.1.

Definition 9.2.1 (Access Permission Contract). Let Prop be a set of properties.
An access permission contract (Lr, Lw) ∈ 2Prop

∗ × 2Prop
∗ is a pair of decidable

languages of property lists. An access permission contract has to fulfill the following
two properties:2

Prefix Closedness A pair (Lr, Lw) ∈ 2Prop
∗ × 2Prop

∗ is prefix closed, if for all
paths p ∈ Lr, with p = p1, . . . , pn, pi ∈ Prop it holds, that p1, . . . , pm ∈ Lr
for all m ∈ {0, . . . , n}.

Prefix Accessibility A pair (Lr, Lw) ∈ 2Prop
∗ × 2Prop

∗ is prefix closed, if for all
paths p ∈ Lw, with p = p1, . . . , pn, pi ∈ Prop it holds, that p1, . . . , pm ∈ Lr
for all m ∈ {0, . . . , n− 1}.

Figure 9.3 specifies the syntax of JSE , a call-by-value lambda calculus with
objects, similar to other core calculus used to model JavaScript [50, 56]. Property
read, property write and object creation work analogously to the constructs from
JSC (Section 4.1). The construct permit x : Lr, Lw in e supports the specification
of access permission contracts. The access permission contract Lr, Lw restricts
access to the heap during the evaluation of e. If a violation during the evaluation
of e occurs, the evaluation stopps.

2The only hard requirement of the formal system is the decidability of the word problem of the
two languages of the access permission contract.
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variable x ∈ Var
property name p ∈ Prop
access path π ∈ Path = Prop∗

path language L ∈ PLang = 2Path

expression e ::= x | λx.e | e(e) | new | e.p | e.p := e
| permit x : Lr, Lw in e

Figure 9.3: JSE – syntax.

A difference between JSE and JSC is that the semantics of JSE is specified
by a big-step evaluation judgment of the form,

ρ,R,W ` H;u; e ↪→ H ′;u′; v ,

while JSC uses a small step operational semantics. The judgment is defined
inductively in Figure 9.4. It specifies, how the expression e transforms the initial
heap H to the final heap H ′ under a given variable environment ρ and indexed
collections R andW of read and write permissions. It also defines the return value
(v) of the execution. The evaluation uses time stamps u ∈ Stamp for multiple
purposes. The rule for property read uses the time stamp to implement the last
writer wins principle. Therefore, the semantics increases the time stamp for each
property write. Time stamps are also used to identify the access contracts. Hence,
additionally to the property read rule, the permit expression increases the time
stamp. All other rules just pass through the time stamp unchanged.
References in the calculus are special. This is a direct consequence of the ref-

erence attachment principle – the calculus stores all the information about the
already traversed access path inside each reference. Hence, a reference contains a
pointer and also a map of indexed access paths. The index map identifies which
access path corresponds to which access permission contract. The calculus uses
time stamps for this purpose.
Figure 9.5 defines which expressions are values, what indexed permissions are

and some other sets and mappings formally. A value is either a reference to an
object or a closure – a pair of a variable environment and an expression. The heap
is a finite map from locations to object. Objects are finite maps from property
names to pairs of time stamps and values. The time stamp component of the pair
saves the time at which the last write access to the property happened. Indexed
permissions are maps from time stamps to languages over property paths.
The evaluation rules for variables (var), lambda abstraction (lam) and function

application (app) are standard. They pass through the time stamp. The rule
app propagates the indexed permission maps R and W unchanged to their sub-
evaluations.
The evaluation rule new creates a new object in the heap and returns a refer-

ence to the newly created object. The object has no properties. Therefore, the
map added to the heap under the new reference ` is empty. Due to the reference
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var
ρ,R,W ` H;u;x ↪→ H;u; ρ(x)

lam
ρ,R,W ` H;u;λx.e ↪→ H;u; (ρ ↓fv(λx.e), λx.e)

app
ρ,R,W ` H;u; e0 ↪→ H ′;u′; (ρ′, λx.e)

ρ,R,W ` H ′;u′; e1 ↪→ H ′′;u′′; v1 ρ′[x 7→ v1],R,W ` H ′′;u′′; e ↪→ H ′′′;u′′′; v

ρ,R,W ` H;u; e0(e1) ↪→ H ′′′;u′′′; v

new
` /∈ dom(H)

ρ,R,W ` H;u; new ↪→ H[` 7→ ∅];u; (`, ∅)

get
ρ,R,W ` H;u; e ↪→ H ′;u′; (`,M) R c̀hk M.p

ρ,R,W ` H;u; e.p ↪→ H ′;u′;M.p<H ′(`)(p)

put
ρ,R,W ` H;u; e1 ↪→ H ′;u′; (`,M) ρ,R,W ` H ′;u′; e2 ↪→ H ′′;u′′; v

W c̀hk M.p H ′′′ = H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]

ρ,R,W ` H;u; e1.p := e2 ↪→ H ′′′;u′′ + 1; v

permit
ρ′,R[u 7→ Lr],W[u 7→ Lw] ` H;u+ 1; e ↪→ H ′;u′; v

ρ′ = ρ[x 7→ ρ(x)C [u 7→ ε]]

ρ,R,W ` H;u; permit x : Lr, Lw in e ↪→ H ′;u′; v

Figure 9.4: JSE – Semantics.

attachment principle the access path to this object is not stored inside the object,
but inside the reference, which is the result of the new expression. The map of in-
dexed access paths of the reference is empty, because the reference is not accessible
with respect to all heaps for which access permission contracts are already regis-
tered (due to the pre-state snapshot principle). For that reason, the new object is
completely unrestricted until a permit operation installs new restrictions for that
reference. The rule new does not change the time stamp, because no object in the
heap is modified.
The rule get defines the read operation of object properties. It relies on some

auxiliary operations defined in Figure 9.7. After computing the location ` and
the collection M of already traversed access paths of the reference, the premise
R c̀hk M.p checks the read permission for these paths extended with property p.
This check is specified by the rule check permission (Figure 9.6), which requires
that for each currently active index u, the access path for u is contained in the set
of permitted access paths for u.
The rule check permission implements the access by default principle by requir-

143



9 Access Permission Contracts

` ∈ Loc countable set of locations
u ∈ Stamp time stamps

H ∈ Heaps = Loc fin−→ Obj

o ∈ Obj = Prop
fin−→ Stamp×Val

P,R,W ∈ Stamp fin−→ PLang

M,N ∈ PMap = Stamp fin−→ Path
(`,m) ∈ Ref = Loc× PMap

v ∈ Val = Ref + Env × Expr

ρ ∈ Env = Var
fin−→ Val

Figure 9.5: JSE – sets.

check permission
∀u ∈ dom(P) ∩ dom(M) :M(u) ∈ P(u)

P c̀hk M

Figure 9.6: JSE – checking permissions.

ingM(u) ∈ P(u) for the time stamps, which are in the domain of both mappings.
If the rule requires the inclusion for all time stamps in the domain of P, the formal
system will implement a reject by default principle.
A get operation also returns a value from the heap. If the return value is a

reference, this reference needs an appropriate indexed property path map. If the
value is no reference, this map is not needed. The function < decides if such a
property map is needed. If the map is needed, < uses another auxiliary function
<u to compute the appropriate map. The two functions are defined in Figure 9.7.
A possible new access path to the reference isM.p, which is the first parameter

of the < operation. The second parameter is the return value of the property
lookup. It contains a time stamp u, which states when the property was written
and a value v. The function < checks, if v is a reference. If that is not the case,
there is no need to compute a map of indexed access paths. Hence, the function
returns the value v. If v is a reference, the map of access paths returned by the
read operation is computed by the operator <u. The parameter u of the operator
is the time stamp from the heap. The purpose of <u is to implement the last
writer wins principle.
In the applicationM<uN , the first argumentM contains the newly discovered

access paths (that is theM.p of the get rule). The second argument N contains
the access paths from the heap. The subscript u is the time stamp used to model
the last write wins principle. The definition in Figure 9.7 distinguishes three cases
depending on when the property was last written and where the written value
came from. The examples in Section 9.3 illustrate these three cases. Let u′ be the
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M′ < (u, v) :=

{
(`,M′ <u N ) if v = (`,N )

v if v /∈ Ref

(M<u N )(u′) :=


N (u′) if u′ ∈ dom(N )

M(u′) if u′ ∈ dom(M)\dom(N ) ∧ u < u′

undefined if u′ ∈ dom(M)\dom(N ) ∧ u ≥ u′

undefined if u′ /∈ dom(M) ∪ dom(N )

(M.p)(u) :=

{
M(u).p if u ∈ dom(M)

undefined if u /∈ dom(M)

Figure 9.7: JSE – auxiliary definitions. We split the third case of the override
operation <u into two cases to make the definition easier to read.

serial number of an execution of a permit expression.

1. The object’s property value already has an access path for index u′ (inN ). In
that case the property has been overwritten since the introduction of u′ and
the existing access path is kept as it reflects an access path at the time when
the permission u′ was created. Preferring elements from N over elements
fromM models the last writer wins design principle.

2. The object’s property value has no access path for index u′ in N . It has
been written before the permission with index u′ was installed as can be
seen from u < u′. Therefore, the reference was accessible in the heap at the
time the permission was installed by the pathM(u′). Hence, we attach the
pathM(u′) to the value.

3. There is no access path for index u′ in N and the property has been written
after the permission of index u′ was installed (viz. u ≥ u′)3. This property
was not linked to the data structure, when u′ was created. The access by
default principle defines that in this situation the access is granted. There-
fore, no entry is attached to the value. Together with rule check permission,
which only checks the inclusion for all u ∈ dom(P) ∩ dom(M), no violation
is reported with respect to the access permission contract registered under
unique id u′.

For the case that both index maps M and N do not contain an entry for
time stamp u′, obviously no entry is attached to the value.

The rule put specifies the operation that writes and (if necessary) defines a prop-
erty. It first computes the location ` and the collection M of access paths of
the object and then checks the write permission to the object with the premise

3The case, that u = u′ never arises, hence u > u′ is equivalent to u ≥ u′.
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9 Access Permission Contracts

Program 9.1 Permit expression with an alias.

1 let x = new in
2 let y = x in
3 permit x : {a},{a} in
4 y.b // y.b is granted, x.b not

(a) Valid Access.

1 let x = new in
2 permit x : {a},{a} in
3 let y = x in
4 y.b // violation

(b) Invalid Access.

W `M M.p. It overwrites the object’s property with the new value. The value is
stored together with the time stamp u′′ in the object. Hence, the time stamp u′′ is
consumed and the rule passes u′′ + 1 to the outer context to avoid collisions with
later permit or put operations.
The rule permit specifies the access permission contract operation. The rule

installs an access permission contract under a unique time stamp u. Hence, u is
consumed and u+1 is the smallest time stamp that may be used by other rules. As
a consequence, the rule permit executes the body of the permit operation under
the fresh time stamp u + 1. It also modifies the variable binding for x. The
modified binding records that under the time stamp u the object bound to x (if
any) is reachable by an empty path from x in the actual heap. Hence, the rule
attaches [u 7→ ε] to the indexed path map of the reference ρ(x). It is realized by
the operation ρ(x)C [u 7→ ε]. Additionally, the rule extends the indexed collections
of read and write permissions with Lr and Lw.
An access permission contract is dynamically scoped, because the access

permission contracts are propagated with the flow of execution and the rule
check permission only considers the entry points in the domain of the current
access permission contract P. In particular, access contracts are not captured by
closures created while they are in force: Closure creation (rule lam) ignores the
access contracts and function application (rule app) continues to use the current
permissions with the body of the invoked function. Hence, after evaluation of the
body of an access permission contract is complete, paths associated with its entry
point u could be garbage collected both from the value and from the heap.

9.3 Examples of the Formal System

9.3.1 Handling Aliases

Let us start with a simple example exploring the basic rules of the formal calculus.
The program fragments in Program 9.1 serve as an example to clarify how the
system handles aliases. The execution of Fragment (a) creates a heap containing
one object. The scope ρ, in which the body of the second let expression is evaluated,
contains two variables x and y. Both variables contain references to the object.
Since the access path map is stored inside the references, ρ(x) and ρ(y) each
do have their own access path map. Fragment (a) installs the access permission
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Program 9.2 Nested permissions.

1 let x = new in // object x
2 let y = new in // object y
3 x.a = new; // object o
4 permit y : {a}, {a} in
5 permit x : {a}, {a} in
6 x.a = y;
7 x.a.a = 42

contract after the creation of the alias y. The permit expression registers an access
permission contract under the time stamp 0 in R and W. The access path map of
the reference x is extended due to the permit operation, while the access path map
of y is not. Therefore, the read access to property b is prohibited if it is performed
with the reference x, but granted if y is used.
In Fragment (b) of Program 9.1, line 2 and 3 are swapped such that the access

permission contract is established before the alias y of x is created. In this situation,
the access path map of the reference to the object, stored in the variable x, is first
extended. Afterwards, the alias is created and the reference is copied. Therefore,
the alias y to the object also contains the entry in its access path map for the time
stamp 0, which ends in a rejection of the access, even through the variable y.

9.3.2 Exploring the Override Function

The code in Program 9.2 is supposed to exercise case 3 of the definition of <u. For
conciseness, we extend the language with a let expression and sequential execution
in the usual way. After establishing the two permissions, the environment ρ is
[x 7→ (`x, [u3 7→ ε]), y 7→ (`y, [u2 7→ ε])] where the ui are sorted according to
their indexes. After the assignment x.a = y (with serial number u4) the object in
location `x is {a : (u4, (`y, [u2 7→ ε]))}. In line 7, x.a evaluates to

[u3 7→ a] < (u4, (`y, [u2 7→ ε])) = (`y, [u3 7→ a] <u4 [u2 7→ ε]) = (`y, [u2 7→ ε])

Case 3 of <u applies because u4 ≥ u3. In consequence, u3 vanishes from the
domain of the map because the object that was reachable via x.a before line 6 has
become garbage. With this reasoning, the update of x.a.a is permitted, because it
is equivalent to y.a.
The code fragments in Program 9.3 serve to illustrate the two remaining cases

of the <u operator. The code fragments differ only in the placement of the permit
expression. Fragment (a) installs the permission before the assignment x.a = x.b,
whereas Fragment (b) installs the permission afterwards. In both cases, let the
permit expression be associated with the time stamp u′ and let x.b contain a
location `b paired with an empty map (according to rule new).
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Program 9.3 Exercising the definition of <u.

1 let x = new in
2 x.a = new;
3 x.b = new;
4 permit x :
5 {a,b,b.a},{a,b.a} in
6 x.a = x.b;
7 x.a.a = 42

(a) Valid access.

1 let x = new in
2 x.a = new;
3 x.b = new;
4 x.a = x.b;
5 permit x :
6 {a,b,b.a},{a,b.a} in
7 x.a.a = 42

(b) Invalid access.

The expression x.b on the left hand side returns the location `b paired with the
map [u′ 7→ b] (according to case 2 of <u: u < u′, because it was generated by
the preceding assignment x.b = new). This value is written to x.a. The following
access to x.a returns (`b, [u

′ 7→ b]) according to case 1 of <u, which governs that the
paths stored in the object take precedence. For the final write access, the extended
access map [u′ 7→ b.a] is checked against the set of write permissions and succeeds.
On the right hand side x.a = x.b is executed before the permit expression. Hence,

x.a contains (`b, ∅) and the get rule makes it return (`b, [u
′ 7→ a]) according to

case 1 of <u. For the write operation, the extended access map [u′ 7→ a.a] is
checked against the set of write permissions and fails.
For a more complex example, which explores all cases of the override operation

in one property read operation, see the next section.

9.3.2.1 One Example to Rule Them All

Program 9.4 is an example that depends on all three cases of the override operation.
The example shows that there is no possibility to simplify the override operation.
Figure 9.8 contains the heap snapshots of Program 9.4. The snapshot of the
function f contains a list of nodes. Each node points to its sucessor, or to the value
undef, which is also presented as an edge from the property to the undef node. The
access permission contract of f states, that all these edges where readable, and that
the next property of the x2 object is writeable.
The graphs keep the scope tables from the outer calls to simplify finding the

correspondence between the edge in the graph and an earlier snapshot, for example
the green-marked edges in the graphs of g and h are the one, which already exists
in the snapshot of f.
Before calling g, f creates the alias x2 and a new object xn. The alias makes it

necessary for the system to track that x2 is reachable with respect to the snapshot
of f under the path next.next from the parameter x0. Hence, the reference stored
in the variable x2 contains the following path map (we use n instead of next to
shorten the maps a little bit):

[0 7→ n.n]
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Program 9.4 Override operation, an example.

1 /∗c ... with [x2.next.bla] ∗/ // time stamp: 4
2 function h(x2) {
3 x2.next.bla = 5; // time stamp: 5
4 }
5

6 /∗c ... with [ x2.next, xn.bla ] ∗/
7 // time stamp 1 for x2, time stamp 2 for xn
8 function g(x2,xn) {
9 x2.next = xn; // time stamp: 3

10 h(x2);
11 }
12

13 /∗c ... with [x0.next.next.next] ∗/ // timestap: 0
14 function f(x0) {
15 var x2 = x.next.next;
16 var xn = { };
17 g(x2,xn);
18 }
19

20 var x0 = { next : { next : { next : {} } } };
21 f(x0);
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Since g has two parameters, we have to convert the access permission contract
into two parts, each with its own time stamp. The first parameter x2 gets time
stamp 1, the second parameter xn gets time stamp 2. Both refer to the same heap.
So the two time stamps are used to distinguish the two variables from each other.
During the execution of g, the new object xn is stored under the property next of
the x2 object. Hence, the object’s property will contain a reference to the new
object, and a time stamp 3. The reference contains the indexed map [2 7→ ε].
The call of h extends the indexed map of x2 by the entry for time stamp 4:

[0 7→ n.n, 1 7→ ε, 4 7→ ε] (9.1)

The override operation is used to merge the following path maps during the get
operation of x2.next in h:

[0 7→ n.n, 1 7→ ε, 4 7→ ε].n <3 [2 7→ ε] = [0 7→ n.n.n, 1 7→ n, 4 7→ n] <3 [2 7→ ε]

= [2 7→ ε, 4 7→ n]

An additional extension of this map with the bla property results in: [2 7→ bla, 4 7→
n.bla], which is supported by the access permission contracts of g (the one regis-
tered under timestamp 2) and h. For the access permission contract of f and for
the access permission contract of g (the one registered under timestamp 1) the
last assignment is not checked, because the object xn was not reachable in the
snapshots from x0 or x2.
This example demonstrates that in a single read operation all four cases of the

override operation are used to compute the correct resulting map. Hence, it is
not possible to simplify the path handling in the framework without giving up the
prestate snapshot principle.

9.4 Formal Properties

9.4.1 Time Stamps

A simple property that is used in the description of the override operation states
that in case 3 of the override definition (u ≥ u′) it never happens that u = u′.

Lemma 9.4.1 (Time Stamps for Writes and Permits). For ρ,R,W ` H;u; e ↪→
H ′, u′, v it holds that for each override operation N<uM used during the evaluation
u /∈ dom(M).

The proof establishes the invariant that the set of time stamps in the heap
identifying a write operation and the time stamps used to identify registered access
permission contracts are disjoint. We call this property time stamp consistency of
the heap.

Definition 9.4.2. A heap H is time stamp consistent, if all its values are H time
stamp consistent. A value v is H time stamp consistent, if
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Snapshot of f, time stamp 0:
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Figure 9.8: JSE – heaps of override example.
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• v = (ρ, λx.e) and ρ is H time stamp consistent or

• v = (`v,Mv), for all u ∈ dom(Mv), for all ` ∈ dom(H) and for all p ∈
dom(H(`)) it holds that H(`)(p) = (u′, v′) implies u 6= u′.

An environment ρ is H time stamp consistent, if for all x ∈ dom(ρ), ρ(x) is H
time stamp consistent.

Proof of Lemma 9.4.1. by induction over ↪→.
We establish the invariant that the heap and the variable environment stays time
stamp consistent and that the time stamp returned by the evaluation is not used
if the time stamp parameter of the evaluation is fresh.

• Case Put, Permit: The invariant ensures that the time stamp u is not used.
Therefore, the use either for the permit or for the write operation cannot
invalidate the fact that the sets of time stamps for write and permits are
disjoint. Since the recursive call is done with an increased, hence fresh, time
stamp, induction is applicable and yields the desired result.

• Case others: All other cases are trivial or just by induction.

9.4.2 Reachability

The semantics of access permission contracts has some subtle implications. For
instance, if x is bound to some object `, then the access contract permit x :
∅, ∅ in e does not establish the protection of all properties of the object ` during the
execution of e. Program 9.1 is a simple example for a violation of this assumption.
So what do access permission contracts actually enforce? The problem with

Program 9.1 is that x and y are aliases of one another. A meaningful characteriza-
tion of the guarantees of an access contract must consider aliasing. To formulate a
precise statement, we extend the evaluation judgment to trace all read and write
accesses in sets T r, Tw ⊆ Loc× Prop:

ρ,R,W ` H;u; e ↪→′ H ′;u′; v [T r, Tw]

Figure 9.9 shows the modified rules for property read and write; the remaining
rules union the trace sets from the subcomputations as in the put’ rule.
Furthermore, reach refers to all heap locations reachable from a given object

location with respect to a heap H. The type of the mapping is reach : Heap ×
Val

fin−→ 2Loc . It returns the set of locations that are reachable from an input value
v in a heap using the auxiliary function ⇓ (see Figure 9.10). The acc function
yields a set of location and property names for all accessible properties along a
path π ∈ Π under a heap H.
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get’
ρ,R,W ` H;u; e ↪→′ H ′;u′; (`,M) [T r, Tw]
R c̀hk M.p v′ =M.p<H ′(`)(p)

ρ,R,W ` H;u; e.p ↪→′ H ′;u′; v′ [T r ∪ {(`, p)}, Tw]

put’
ρ,R,W ` H;u; e1 ↪→′ H ′;u′; (`,M) [T r1 , T

w
1 ]

ρ,R,W ` H ′;u′; e2 ↪→′ H ′′;u′′; v [T r2 , T
w
2 ]

W c̀hk M.p H ′′′ = H ′′[` 7→ H ′′(`)[p 7→ (u′′, v)]]

ρ,R,W ` H;u; e1.p := e2 ↪→′ H ′′′;u′′ + 1; v [T r1 ∪ T r2 , Tw1 ∪ Tw2 ∪ {(`, p)}]

Figure 9.9: JSE – tracing property read and write.

Theorem 9.4.3 (Completeness). Suppose that

ρ,R,W ` H0;u; permit x : Lr, Lw in e ↪→′ H1;u′; v [T r, Tw] (9.2)

and that
reach(H0, ρ(fv(e) \ {x})) ∩X = ∅ (9.3)

where X = reach(H0, ρ(x)).
Then T r ∩ (X × Prop) ⊆ acc(H0, ρ(x), Lr) and Tw ∩ (X × Prop) ⊆

acc(H0, ρ(x), Lw).

Condition (9.3) states that everything reachable from the variable x, is not
reachable from any other free variable of e. The conclusion of the theorem is that
for every access pair (`, p) ∈ Tr where ` happens to be reachable from ρ(x) this
access must be sanctioned by the language Lr of read permissions. The latter is
formalized via the acc function: It splits every access path in Lr in a prefix π and
last property p, computes the dereferenced locations from ρ(x) along path π and
pairs the results (at most one) with p.
To prove this theorem, we establish an invariant that we formulate for the judg-

ment without the traces because they are not needed to prove it. The assumption
ρ,R,W ` H0;ux; permit x : Lr, Lw in e ↪→ H1;u1; v in the theorem can only hold
(by inversion) if its premise also holds:

ρ′,R[ux 7→ Lr],W[ux 7→ Lw] ` H0;ux + 1; e ↪→ H1;u1; v (9.4)

where ρ′ = ρ[x 7→ ρ(x) < [ux 7→ ε]]. Let’s further assume that ρ(x) = (`x,mx) ∈
Ref – otherwise, the theorem is trivially true because v /∈ Ref ⇒ ⇓(H0, v, π) = ∅
for all π, so that X = ∅.

Definition 9.4.4. A value v is primarily reachable (short: p.r.) from `x with
index ux in H0, if
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reach(H, {v1, . . . , vn}) =
⋃
i reach(H, vi)

reach(H, v) = ⇓(H, v,Path)

⇓(H, v,Π) =
⋃
{⇓(H, v, π) | π ∈ Π}

⇓(H, (u, v), π) = ⇓(H, v, π)

⇓(H, v, π) =

{
⇓′(H, `, π) v = (`,m)

∅ v /∈ Ref

⇓′(H, `, ε) = {`}

⇓′(H, `, p.π) =

{
⇓(H,H(`)(p), π) p ∈ dom(H(`))

∅ otherwise

acc(H, v,Π) =
⋃
{acc(H, v, π) | π ∈ Π}

acc(H, (`,M), π.p) = {(`′, p) | `′ ∈ ⇓′(H, `, π)}
acc(H, v, π) = ∅ if v /∈ Ref

Figure 9.10: JSE – heap traversal.

• v = (`,M) with ux ∈ dom(M) implies that

(`, p) ∈ acc(H0, `x,M(ux)) (9.5)

• v = (ρ, λy.e) with ρ is p.r.

An environment ρ is p.r. if (∀y ∈ dom(ρ)) ρ(y) is p.r. A heap H is p.r. if
∀` ∈ dom(H) and ∀p ∈ dom(H(`)) H(`)(p) are p.r. A pair (u, v) is p.r. if v is
p.r. (All with respect to the same fixed `x, ux, and H0.)

Lemma 9.4.5. For each judgment of ρ′,R′,W ′ ` H ′;u′; e′ ↪→ H ′′;u′′; v′′ occurring
in the derivation of (9.4) it holds that: if ρ′ and H ′ are p.r. from `x with index ux
in H0, then so are H ′′ and v′′.

Proof. By induction on the derivation. Each case refers to the variables used in
the respective rule in Figure 9.4.
Case var: Obviously true.
Case lam: Obviously true.
Case app: By the assumption on ρ and H, induction on e0 yields H ′ and ρ′ p.r.

As now ρ and H ′ are p.r., induction yields that H ′′ and v1 are p.r. As ρ′[x 7→ v1]
and H ′′ are p.r., induction yields H ′′′ and v are p.r., which proves the result.
Case new: The heap H[` 7→ ∅] and the value (`, ∅) are both p.r.
Case get: By induction H ′ and (`,M) are p.r. That means, if ux ∈ dom(M)

then ` ∈ ⇓′(H0, `x,M(ux)). It remains to show that M.p < H ′(`)(p) is p.r. The
only significant case occurs if H ′(`)(p) = (u, (`′,N )), in which case the returned
value isM.p< (u, (`′,N )) = (`′,M.p<u N ).
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If ux ∈ dom(N ), then the heap location has changed its content since the access
permission contract is associated with ux and it has been overwritten with a value
reachable in H0 from `x on the path N (ux). This path annotation has to stay
in force to ensure that the result (M.p <u N )(ux) = N (ux) is p.r. It holds by
induction that N (ux) is p.r.
If ux /∈ dom(N ), then the contents of the heap location has not yet been reached

from `x. There are two cases, which can be distinguished by comparing u and ux.
If u < ux, then the heap location has not changed compared with H0. Thus
the result can be marked as visited. This is expressed by (M.p <u N )(ux) =
(M.p)(ux) =M(ux).p. By the property read that happens in this rule, it is clear
that `′ ∈ ⇓′(H0, `x,M(ux).p).
If, however, u > ux, then the heap location has changed compared to H0, but

the new value is not reachable from `x in H0. For that reason, the value must not
receive a ux annotation. This is expressed by (M.p<u N )(ux) = undefined.
The case u = ux never occurs, because ux is a time stamp used to register an

access permission contract. It can’t be used by a write operation.
Case put: By induction H ′ and (`,M) are p.r. Hence, H ′′ and v are also p.r.

by induction. The final heap is p.r., because the rule overwrites a value with a p.r.
value.
Case permit: Immediate by induction.

Proof of Theorem 9.4.3. The proof is by induction on the evaluation judgment
with traces. We observe that the top-level judgment “seeds” the lemma in a non-
trivial way. The environment ρ[x 7→ ρ(x) < [ux 7→ ε]] is p.r. with respect to
ux, `x, and H0 (from (9.4)) because `x ∈ ⇓′(H0, `x, ε) and no other environment
entry refers to ux. Similarly, the heap H0 is p.r. because it does not contain any
reference to ux. Thus, the lemma tells us that H1 and v are also p.r.
We can conclude from the lemma that all subderivations only return p.r. values.

Case distinction of ↪→.

• Case GET’: Since the rule GET’ is the only rule that extends the set T r,
we have to show that

(`, p) ∈ acc(H0, ρ(x), Lr)

for a p.r. (`,M) (from `x with respect to ux) or that ` /∈ X.

If ux ∈ dom(M) then ` ∈ ⇓′(H0, `x,M(ux)). Inversion of GET’ also yields
R c̀hk M.p. Hence M.p(ux) ∈ Lr holds, and we can conclude that (`, p) ∈
acc(H0, ρ(x), Lr).

If ux /∈ dom(M), it holds that ` /∈ X. This holds due to the definition of
primary reachable values and the precondition of the theorem.

• Case PUT’: The rule PUT’ extends the set Tw. We have to show that

(`, p) ∈ acc(H0, ρ(x), Lw)
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for a p.r. (`,M) (from `x with respect to ux) or that ` /∈ X.

If ux ∈ dom(M), then ` ∈ ⇓′(H0, `x,M(ux)). Inversion of PUT’ yields
W c̀hk M.p. Hence M.p(ux) ∈ Lw and we can conclude that (`, p) ∈
acc(H0, ρ(x), Lw).

If ux /∈ dom(M), it holds by the definition of primary reachable and the
precondition of the theorem that ` /∈ X.

End case distinction of ↪→.

9.4.3 Stability of Violation

Stability of violation is a property linked to the reference attachment principle
(Section 9.1.6). It states that a violation of an access permission contract is pre-
served (in a precisely defined sense) when restarting the same computation on a
heap with more aliasing.
Let us first clarify what we mean by saying “more aliasing.” For two heaps H1

and H2, H2 has more aliasing than H1 if H2 identifies locations that are distinct
in H1 and merges the contents of the objects in these locations. That is, if o′

and o′′ are distinct objects in H1 which are merged to object o in H2, then o has
all properties from o′ and o′′. Properties present in o′ and o′′ must have suitably
related values that map into the same value in H2. We call H1 a refinement of H2,
because it makes more distinctions between objects.

Definition 9.4.6. A heap H1 is a γ-refinement of heap H2, written as H1 <γ H2,
if γ : dom(H1) → dom(H2) is a surjective mapping between heap locations and
∀`1 ∈ dom(H1), o1 = H1(`1), o2 = H2(γ(`1)):

RH1 dom(o1) ⊆ dom(o2) (objects in the refined heap have fewer properties) and

RH2 (∀p ∈ dom(o1)) o1(p) = (u1, v1) ∧ o2(p) = (u2, v2) ∧ u1 = u2 ⇒ v1 <γ v2

A value is a γ-refinement of another value, written as v1 <γ v2 iff

RV1 v1 = (`1,M1) and v2 = (`2,M2) and `2 = γ(`1) andM1 =M2, or

RV2 v1 = (ρ1, e1) and v2 = (ρ2, e2) and ρ1 <γ ρ2 and e1 = e2.

An environment is a γ-refinement of another, ρ1 <γ ρ2 iff

RE1 dom(ρ1) = dom(ρ2) and

RE2 (∀x ∈ dom(ρ1)) ρ1(x) <γ ρ2(x).

The implication in RH2 might be surprising. This choice allows the coarser
heap H2 to contain a value which does not refine to all corresponding values in
heap H1: for each object in H2, there may be any number of γ-preimages of this
object in H1. RH2 states that such an object does not need to be consistent with
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all its preimages. This case can be detected by the condition u1 < u2: the shared
version of the object has been updated after one of its unshared preimages. The
remaining case u1 > u2 can never arise.
Such inconsistencies are allowed in a heap refinement, because they only in-

fluence the semantics of a program if there is a subsequent read operation that
observes the inconsistency. In this case, the criterion u1 < u2 can be used to
detect the inconsistency and react accordingly.
Having established the notion of heap refinement, it remains to run the same

program on two heaps and compare the outcomes. Finally, it is not sufficient
to consider only successful, terminating evaluations. Evaluations that end in a
contract violation or an interrupted evaluation must be taken into account, too.
Figure 9.11 specifies the rules of three judments of the form ρ,R,W ` H;u; e ⇑i
where i ∈ {R,W,O}. Each judgment formalizes an interrupted evaluation. The
superscript R indicates a missing read permission (rule get-crash2). Superscript
W indicates a missing write permission (rule put-crash3). Superscript O indi-
cates non-deterministically giving up on a read operation (rule get-crash3). The
remaining rules are straightforward variants of the evaluation rules in Figure 9.4
that propagate the error conditions in the standard way.
The error rules are only intended to capture permission errors. Derivations

with type errors or non-termination do not exist, as it is common with big-step
semantics.
These judgments enable us to capture the notion of an inconsistent read oper-

ation as discussed after Definition 9.4.6. The following definition formalizes the
intuitions of this discussion.

Definition 9.4.7. Let H1 <γ H2 and ρ1 <γ ρ2 and

ρ1,R,W ` H1;u; e ↪→ H ′1;u′1; v′1 (9.6)

ρ2,R,W ` H2;u; e ⇑O (9.7)

Derivation (9.7) ends in an inconsistent read operation with respect to (9.6) if
there are corresponding subderivations of (9.6) ending in an instance of get

get
ρ′′1,R′′,W ′′ ` H ′′1 ;u′′; e′′ ↪→ H ′′′1 ;u′′′; (`1,M1)
R′′ c̀hk M1.p v′′′1 =M1.p<H ′′′1 (`1)(p)

ρ′′1,R′′,W ′′ ` H ′′1 ;u′′; e′′.p ↪→ H ′′′1 ;u′′′; v′′′1

and (9.7) ending in an instance of get-crash3

get-crash3
ρ′′2,R′′,W ′′ ` H ′′2 ;u′′; e′′ ↪→ H ′′′2 ;u′′′; (`2,M2) R′′ c̀hk M2.p

ρ′′2,R′′,W ′′ ` H ′′2 ;u′′; e′′.p ⇑O

such that there exists γ′′ extending γ and γ′′′ extending γ′′ where ρ′′1 <γ′′ ρ
′′
2, H

′′
1 <γ′′

H ′′2 , H
′′′
1 <γ′′′ H

′′′
2 , but H ′′′1 (`1)(p) = (u1, v1) and H ′′′2 (`2)(p) = (u2, v2) with u1 <

u2.
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app-crash1
ρ,R,W ` H;u; e0 ⇑i

ρ,R,W ` H;u; e0(e1) ⇑i

app-crash2
ρ,R,W ` H;u; e0 ↪→ H ′;u′; (ρ′, λx.e) ρ,R,W ` H ′;u′; e1 ⇑i

ρ,R,W ` H;u; e0(e1) ⇑i

app-crash3
ρ,R,W ` H;u; e0 ↪→ H ′;u′; (ρ′, λx.e)

ρ,R,W ` H ′;u′; e1 ↪→ H ′′;u′′; v1 ρ′[x 7→ v1],R,W ` H ′′;u′′; e ⇑i

ρ,R,W ` H;u; e0(e1) ⇑i

get-crash1
ρ,R,W ` H;u; e ⇑i

ρ,R,W ` H;u; e.p ⇑i

get-crash2
ρ,R,W ` H;u; e ↪→ H ′;u′; (`,M) R 6 c̀hk M.p

ρ,R,W ` H;u; e.p ⇑R

get-crash3
ρ,R,W ` H;u; e ↪→ H ′;u′; (`,M) R c̀hk M.p

ρ,R,W ` H;u; e.p ⇑O

put-crash1
ρ,R,W ` H;u; e1 ⇑i

ρ,R,W ` H;u; e1.p := e2 ⇑i

put-crash2
ρ,R,W ` H;u; e1 ↪→ H ′;u′; (`,M) ρ,R,W ` H ′;u′; e2 ⇑i

ρ,R,W ` H;u; e1.p := e2 ⇑i

put-crash3
ρ,R,W ` H;u; e1 ↪→ H ′;u′; (`,M)

ρ,R,W ` H ′;u′; e2 ↪→ H ′′;u′′; v W 6 c̀hk M.p

ρ,R,W ` H;u; e1.p := e2 ⇑W

permit-crash
ρ[x 7→ ρ(x)C [u 7→ ε]],R[u 7→ Lr],W[u 7→ Lw] ` H;u+ 1; e ⇑i

ρ,R,W ` H;u; permit x : Lr, Lw in e ⇑i

Figure 9.11: JSE – crashing and partial computations.
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The definition mentions the notion of γ′ extending γ. This “extending” relation
between maps is the reflexive, transitive closure of the “directly extends” relation:
γ′ directly extends γ if γ′ = γ[`1 7→ `2] where `1 /∈ dom(γ) and `2 /∈ ran(γ), where
ran(γ) denotes the range of γ.
We are now ready to state two theorems about related executions on refined

heaps. The second theorem is our desired stability result, but the first one is needed
to prove it. The following theorem states that a program running successfully on
some heap runs on a coarser heap with more aliasing either successfully or crashes
due to a inconsistent read after write operation.

Theorem 9.4.8 (Simulation). If

H1 <γ H2 (9.8)
ρ1 <γ ρ2 (9.9)

ρ1,R,W ` H1;u; e ↪→ H ′1;u′1; v′1 (9.10)

then either

ρ2,R,W ` H2;u; e ↪→ H ′2;u′2; v′2 (9.11)

such that there exists γ′ extending γ where H ′1 <γ′ H
′
2 and u′1 = u′2 and v′1 <γ′ v

′
2

or

ρ2,R,W ` H2;u; e ⇑O (9.12)

such that the derivation of (9.12) ends in an inconsistent read operation with respect
to (9.10).

Proof. We prove the theorem by induction on the derivation of (9.10).
Case distinction over ρ1,R,W ` H1;u; e ↪→ H ′1;u′1; v′1.

• Case Var, e ≡ x: From (9.10) we conclude x ∈ dom(ρ1) and H ′1 = H1 and
v′1 = ρ1(x). By (9.9) it holds that x ∈ dom(ρ2). Therefore, Var is applicable
to the expression under the environment ρ2. Since the heap does not change
due to the rule application, H2 = H ′2 holds. Therefore, H ′1 <γ H ′2 is trivial by
(9.8). It also holds that v′1 <γ v′2 due to (9.9) and ρ1(x) = v′1 and ρ2(x) = v′2.
It trivially holds that the time stamps are equal.

• Case Lam, e ≡ λx.e′: Since the rule Lam does not have any preconditions
considering the heap or the variable environment, (9.11) holds trivially for the
heap H2. It is also clear that the time stamps are equal and that H ′1 <γ H ′2
holds. It is left to show that

v′1 = (ρ1 ↓fv(λx.e′), λx.e
′) <γ (ρ2 ↓fv(λx.e′), λx.e

′) = v′2 (9.13)

(9.13) holds since it is obvious that ρ1 <γ ρ2 implies for all X

ρ1 ↓ X <γ ρ2 ↓ X (9.14)

(which can easily be proven by induction on the elements of X).
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• Case App, e ≡ e0(e1): We can conclude by inversion of (9.10) that e0 sim-
plifies to a closure under heap H1 and variable environment ρ1:

ρ1,R,W ` H1;u; e0 ↪→ H ′1;u′; (ρ′1, λx.e
′) (9.15)

The induction hypothesis lets us now conclude that either e0 crashes, or that
the first conclusion of the theorem holds. If e0 crashes, this leads to a crash of
the expression e0(e1) under H2 and ρ2, too. Hence, in this case the theorem
is proven.

Let us continue under the assumption, that e0 is executable under the heap
H2 and the variable environment ρ2. The induction hypothesis implies that
there exists γ′, which is an extension of γ, such that

ρ2,R,W ` H2;u; e0 ↪→ H ′2, u
′, (ρ′2, λx.e

′) (9.16)

with H ′1 <γ′ H ′2 and (ρ′1, λx.e
′) <γ′ (ρ′2, λx.e

′).

Next, we continue by using the induction hypothesis for e1 with γ′.

The third step is to apply induction on the body of the function e′. The
function is executed under a variable environment, in which x is bound to
v1, the result of execution e1. Obviously all preconditions of the theorem are
fulfilled, and the error cases can be handled analogous to the error case for
expression e0.

It is important for the proof to work correctly that if γ′ is an extension of γ
and γ′′ is an extension of γ′ then γ′′ is also an extension of γ.

• Case New, e ≡ new: It holds H ′1 = H1[`1 7→ ∅] and v′1 = (`1, ∅) for an
arbitrary `1 /∈ dom(H1). Obviously New is applicable under H2 and ρ2

(H ′2 = H2[`2 7→ ∅] and v′2 = (`2, ∅) for an arbitrary `2 /∈ dom(H2)). The
existens of such an `2 is trivial due to the fact that the domain of the heap
H2 is finite.

The extension γ′ = γ[`1 7→ `2] relates the values v′1 and v′2 and the heaps H ′1
and H ′2 as asked by the theorem.

• Case Get, e ≡ e′.p: Inversion of (9.10) yields

ρ1,R,W ` H1;u; e′ ↪→ H ′1;u′; (`1,M1) (9.17)
R c̀hk M1.p (9.18)

v′1 =M1.p<H ′1(`1)(p) (9.19)

Induction on (9.17) yields

ρ2,R,W ` H2;u; e′ ↪→ H ′2;u′; (`2,M2) (9.20)
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for an γ′ extending γ such that

H ′1 <γ′ H
′
2 (9.21)

(`1,M1) <γ′ (`2,M2) (9.22)

(we can ignore the case in which e′ crashes since in that case e crashes under
H2 and ρ2, too). A consequence of (9.22) is that γ′(`1) = `2. It also implies
M1 =M2. We conclude from this with (9.18) that R c̀hk M2.p. Therefore
Get is applicable on e under H2 and ρ2:

ρ2,R,W ` H1;u; e ↪→ H ′2;u′,M2.p<H ′2(`2)(p) (9.23)

It is left to prove that γ′ is a valid extension of γ, such that

v′1 <γ′ v
′
2 (9.24)

where v′2 =M2.p<H ′2(`2)(p) or that the execution under the heap H2 and
the variable environment ρ2 crashes. Depending on the time stamps stored
inside of the heap H ′1 and H ′2 for `1, `2 and property p we can prove either
the former or the latter. Let (u1, v1) = H ′1(`1)(p) and (u2, v2) = H ′2(`2)(p).

Case distinction over the equality of u1 and u2.

– Case u1 = u2: If the time stamps are equal, we can conclude from
(9.21), that v1 <γ′ v2. (9.24) holds due to M1 = M2 (consider the
definition of <).

– Case u′1 6= u′2: In this case, we can apply Get-Crash3 to conclude
(9.12). Its derivation ends in an inconsistent read operation with respect
to (9.10).

End case distinction over the equality of u1 and u2.

• Case Put, e ≡ e′1.p := e′2: Inversion of (9.10) yields

ρ1,R,W ` H1;u; e′1 ↪→ H ′′1 ;u′; (`1,M1) (9.25)
ρ1,R,W ` H ′′1 ;u′; e′2 ↪→ H ′′′1 ;u′′; v′1 (9.26)

W c̀hk M1.p (9.27)
H ′1 = H ′′′1 [`1, p 7→ (u′′, v′1)] (9.28)

u′1 = u′′ + 1 (9.29)

We proceed with induction over (9.25). We can skip the cases with a crash,
because they are analogous. Therefore, we can assume

ρ2,R,W ` H2;u; e′1 ↪→ H ′′2 ;u′, (`2,M2) (9.30)

There also exists an extension γ′ of γ such that H ′′1 <γ′ H ′′2 and (`1,M1) <γ′
(`2,M2). We conclude from the latter `2 = γ′(`1) and thatM1 =M2.
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We continue with induction on (9.26) and find an extension γ′′ of γ′. By the
fact thatM1 =M2 and analogous to the situation in the rule Lam, we can
conclude that the rule Put is applicable. The relations between the resulting
heaps and the return values also hold (due to the fact that the value are in
relation to each other and the time stamps are equal).

• Case Permit, e ≡ permit x : Lr, Lw in e′: Inversion of (9.10) yields

ρ′1,R[u 7→ Lr],W[u 7→ Lw] ` H1;u+ 1; e′ ↪→ H ′1;u′1; v′1 (9.31)
ρ′1 = ρ1[x 7→ ρ1(x)C [u 7→ ε]] (9.32)

By induction on (9.31), the evaluation under the heap H2 and the variable
environment ρ′2 = ρ2[x 7→ ρ2(x) C [u 7→ ε]] either crashes (continue with
Permit-Crash) or it holds that

ρ′2,R[u 7→ Lr],W[u 7→ Lw] ` H2;u+ 1; e′ ↪→ H ′2;u′2; v′2 (9.33)

where u′1 = u′2, H ′1 <γ′ H ′2 and v′1 <γ′ v′2 for some γ′ extending γ. Therefore,
the rule Permit is applicable for the heap H2 and the environment ρ2 and
yields the desired values.

End case distinction over ρ1,R,W ` H1;u; e ↪→ H ′1;u′1; v′1.

The second theorem states that crashes due to violated read or write permissions
are preserved when more aliasing is added. The main complication here is that
an inconsistent read operation in the version with additional aliasing may lead to
arbitrary behavior of the program including non-termination. For that reason, the
theorem only constructs a related execution up to the first inconsistent read.

Theorem 9.4.9 (Error Preservation). If H1 <γ H2 and ρ1 <γ ρ2 and

ρ1,R,W ` H1;u; e ⇑i (9.34)

(for i ∈ {R,W}) then

ρ2,R,W ` H2;u; e ⇑j (9.35)

such that either i = j or j = O and the derivation of (9.35) ends in an inconsistent
read operation with respect to (9.34).

Proof. We prove the theorem by induction over (9.34). Because of Theorem 9.4.8
we only consider crashing subcomputations. Therefore, our case distinction only
handles the rules for crashing evaluations in Figure 9.11.
Case distinction over ρ1,R,W ` H1;u; e ⇑i.

• Case App-Crash1, Get-Crash1, Put-Crash1, Permit-Crash: These cases
just pass through the result. We can directly apply the induction hypothesis
and conclude the desired result.
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9.4 Formal Properties

• Case App-Crash2, e ≡ e0(e1): Inversion of App-Crash2 yields

ρ1,R,W ` H1;u; e0 ↪→ H ′1;u′; (ρ′1, λx.e
′) (9.36)

ρ1,R,W ` H ′1;u′; e1 ⇑i (9.37)

We apply Theorem 9.4.8 to (9.36). Either the expression evaluates normally
under the heap H2 and the environment ρ2, or it crashes with an inconsistent
read operation. In the second case we can apply App-Crash1 to prove that
j = O. In the first case, we can apply induction on (9.37). The induction
yields two possibilities, either j = i or j = O. We can continue in both cases
by applying App-Crash2 to prove either the first or the second claim of our
theorem.

• Case App-Crash3, e ≡ e0(e1): This case is analogous to App-Crash2. The
only difference is that we apply Theorem 9.4.8 twice; first, to the evaluation
of e0, and second, to the evaluation of e1. The step that puts the two together
is handled by induction.

• Case Get-Crash2, e ≡ e′.p: Inversion yields:

ρ1,R,W ` H1;u; e′ ↪→ H ′1;u′; (`1,M1) (9.38)
R 6 c̀hk M1.p (9.39)

By Theorem 9.4.8, either e′ crashes underH2 and ρ2, or it evaluates normally.
In the first case, we apply Get-Crash1. In the second case, the result of
evaluating e′ under H2 and ρ2 returns a reference (`2,M2), such thatM1 =
M2. Therefore, R 6 c̀hk M2.p holds. Hence, we can apply Get-Crash2 to
conclude the desired results.

• Case Get-Crash3, e ≡ e′.p: In this cases i = O, which is not allowed by the
precondition. Therefore, in this case, there is nothing to prove.

• Case Put-Crash2, e ≡ e0.p = e1: Analogous to App-Crash2.

• Case Put-Crash3, e ≡ e0.p = e1: Similar to Get-Crash2.

One of the cases is that since the two references resulting from executing e0

in the two different heaps contain the same mapsM1 andM2. This implies
allows that the third precondition of Push-Crash3 is applicable to the heap
H2 and ρ2.

End case distinction over ρ1,R,W ` H1;u; e ⇑i.
It is interesting to observe that the ⇑O outcome only arises due to subcompu-

tations that did not crash in H1. So, they are only generated by invocations of
Theorem 9.4.8, not by cases handled directly in this proof.
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10 Inferring Access Permission
Contracts

So far we have not discussed how access permission contracts are created. The
task of the JSConTest was just to dynamically monitor the provided access per-
mission contracts during random testing, during the execution of a manual test
suite or during the execution of the program in the wild. The contracts were pro-
vided by the programmer with a notation based on comments (e.g. Chapter 8 or
Chapter 12), or, in the formal system (Chapter 9), by a language contract.
If the access permission contracts are already used during software development,

the annotation burden is not an issue. The notation of access contracts is fairly
compact. Because the system is partially applicable, the programmer may decide
to use it only for functions, for which the side effects are important. In such cases,
independent from the fact, if access permission contracts were used, there is the
need to document the side effects of the functions (otherwise, they could not be
important). Therefore, using access permission contracts for the description of side
effects is no more effort than using natural langue for this purpose. Furthermore,
since access permission contracts come with the automatic dynamic checking fa-
cility, the programmer will save a lot of work ensuring that the documentation
and the code is synchronized. Therefore, we believe that in this setting, the use of
access permission contract will pay off.
But when a tester uses JSConTest to specify the behavior of a software system,

the tester typically does not have a lot of intuition about the function, which he
has to annotate. Therefore, he tries to extract the access permission contract from
a language description, or, if such an description is not available, directly from
the source code. Of course, this is a tedious and time consuming task, and it will
typically end up in building the access permission contract on a large number of
guesses about the dynamic behavior of the code. Then, the tester will run the
test suite. If access permission contract violations are reported, the tester will
adjust the access permission contract, or the code (and fix a bug), und start with
a new iteration, until enough test runs pass without an access permission contract
violation.
But it is not enough to find an arbitrary access permission contract that does

not yield an access violation in a large number of test runs. Because the access
permission contract is a specification of the desired behavior of the system, its form
has to be sufficiently general, and, at the same time, it has to be sufficiently specific
to give a tight description of the behavior. Only if both conditions are fulfilled,
the access permission contract is valuable for documentation purposes and future
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10 Inferring Access Permission Contracts

p ∈ Prop property names
π ::= ε | p.π access paths
P ⊆ Prop set of property names
b ::= ε | P.b | P ∗ .b path contract
a ::= ∅ | b | a+ a | a− a access permission contract
γ ::= R |W | Nr | Nw access classifiers
κ ::= γ(π) classified access path
? = Prop, @ = ← = ∅ ⊆ Prop, ∗.b = ?∗.b

Figure 10.1: Syntax of access paths and access permission contracts.

error detection purposes.
Therefore, the task of an inference algorithm for access permission contracts is

to find an access permission contract for a function that is simple to read and
write, easy to understand, valid and tight. It is not enough to just find a valid
one, ignoring the other requirements. To simplify matters the inference algorithm
does not infer arbitrary access permission contracts, but it only computes access
permission contracts which are prefix closed (Definition 9.2.1) and prefix accessible
(Definition 9.2.1).
Another important aspect of the inference is that the inferred access permission

contracts can be attached to the functions as the manually provided access permis-
sion contracts. Therefore, even if the formal system does not restrict the read and
write set of an access permission contract in any way, our goal is not to find a pair
of valid sets, but to find an access contract, as they occur in the implementation.
In Section 10.1 we formally present the access permission contracts as they

arise in the implementation. After that we present an inference algorithm for
access permission contracts (Section 10.2). Some special cases handled by the
implementation, but not by the formal description of the algorithm are presented
in Section 10.3. Section 10.4 contains a proof that the algorithm is sound.

10.1 Access Path Formalization

The goal of this section is to develop a formal presentation of access contracts that
is more specific than the definition of access contracts used in Chapter 9. But, at
the same time, the formalization of access permission contract should not contain to
many low level details. For example Figure 8.2 contains a concrete syntax for access
permission contracts with a lot of parsing details. For a formal presentation these
details should be avoided. Therefore, this section introduces a formal definition of
access permission contracts. Of course it is important to connect the three different
abstract levels of access permission contracts. Therefore, the section finishes by
connecting the three different forms of access permission contracts.
Let us start by introducing access paths as lists of property names (Figure 10.1).

An access permission contract a is either the empty set ∅, a path permission b,
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10.1 Access Path Formalization

W(ε) ≺ ε R(ε) ≺ b Nr(π) ≺ ε Nw(ε) ≺ ∅.ε Nw(ε) ≺ ε

γ(π) ≺ b p ∈ P
γ(p.π) ≺ P.b

γ(π) ≺ b
γ(π) ≺ P ∗ .b

γ(π) ≺ P ∗ .b p ∈ P
γ(p.π) ≺ P ∗ .b

κ ≺ a1

κ ≺ a1 + a2

κ ≺ a2

κ ≺ a1 + a2

R(π) ≺ a1 Nr(π) 6≺ a2

R(π) ≺ a1 − a2

W(π) ≺ a1 Nw(π) 6≺ a2

W(π) ≺ a1 − a2

(∀κ ∈ K) κ ≺ a
K ≺ a

Figure 10.2: Matching paths with access permission contracts.

the union of two access permission contracts a+ a, or the difference between two
access contracts a − a. A path permission b is typically a list of property name
sets. The only special thing to mention is, that P ∗ .b is used to express that the
properties p ∈ P may be repeated arbitrary often.
To define the semantics of access contracts, it is necessary to distinguish if a

path was used in a read operation, or in a write operation. Therefore, we classify
access paths as read paths and write paths by writing R(π), W(π). For an access
permission contract a

κ ≺ a (10.1)

defines that the classified access path κ matches the access permission contract
a. The definition of the relation ≺ also makes use of the two classifiers Nr and
Nw to define the semantics of negative access permission contracts. Figure 10.2
defines the semantics of access permission contracts with inference rules for the
judgment κ ≺ a. Essentially, a single path step P in a permission is matched by a
corresponding property p ∈ P in the path. An iterated path step P∗ is matched by
a sequence of properties from P in the path. The five axioms on top of Figure 10.2
implement the different treatments of the four kinds of paths. A write path must
be matched exactly by the permission, a read path may match any prefix of the
permission, and a negative read path only requires that a path prefix is matched
by the permission. The latter choice is required for the implementation of the
difference operator a1−a2, where the second premise asks for Nr(π) 6≺ a2, that is,
there should be no derivation of Nr(π) ≺ a2. To remove the write permission from
an access permission contract, without influencing the read permission, Nw(π)
does also match the empty set. This definition of the matching relation enforces
that the read language is prefix closed as well as that the access permission contract
is prefix accessible (consider Definition 9.2.1 and Definition 9.2.1).

Lemma 10.1.1. For all access permission contract a, the read language Lr = {π |
R(π) ≺ a} is prefix closed.
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10 Inferring Access Permission Contracts

Proof. By induction.

Lemma 10.1.2. For all access permission contract a, the pair (Lr, Lw) with Lr =
{π | R(π) ≺ a} and Lw = {π |W(π) ≺ a} is prefix accessible.

Proof. By induction.

10.1.1 Connecting Access Permission Contract Specifications

Turning to the concrete syntax, an access permission contract for a variable x has
the following general form:

with [x.w1,. . .,x.wn] except [x.e1,. . .,x.em] (10.2)

Translated to the formal syntax defined in Figure 8.2, this permission reads as
follows:

a = (w1 + . . .+ wn)− e1 − . . .− em .

The access permission contract (10.2) corresponds to the language Lr = {π |
R(π) ≺ a} of permitted read paths and the language Lw = {π | W(π) ≺ a} of
permitted write paths for the variable x. Hence, adding a contract with an effect
annotation to a function as in (10.2) is equivalent to surrounding the function body
e with the permit expression permit x : Lr, Lw in e. This notation allows to remove
only write permissions of π from the set Lw, without affecting Lr, by

with [. . .] except [x.π.∅] . (10.3)

To make the two situations more distinguishable (in the positive specification
extend a path with the empty set means, we are talking about read access, while
in the negative part it means, we are talking about write access), you may use @r

in the positive case and ← in the negative case.
As in the formal syntax, paths of arbitrary length can be specified using the ∗

operator. For example, an access permission contract for x, x.next, x.next.next, . . .
for the elements of a list is written as x.next∗. The wildcard property ? stands
for the set of all property names. If the operator ∗ is used without a preceding
property name, then it stands for ?∗, specifying a sequence of arbitrary property
names.
A property set can be specified in several ways. An identifier (as in x.test) or a

string literal (x."foo.bar") specify singleton sets, with the string notation allowing
special characters (like .) in property names. A regular expression (x./left|right/)
specifies the set of properties that match the expression.

10.2 Algorithm

The inference algorithm takes a set of access paths (either a read access, or a write
access) and computes a reasonable access permission contract for them. This task
is a special instance of the more general problem, learning a (regular) language
from a set of positive examples. Consider the following lemma:
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7

1l

6

h 1d

4

n 1d

2

n 1d

Figure 10.3: Example trie.

Lemma 10.2.1. Let K = {γi(πi) | i ∈ I} be an finite set of access path for
γi ∈ {R,W}.

• For bi = πi it holds: K ≺
∑

i bi.

• K ≺ ∗.

Proof. Trivial by induction over ≺.

The Lemma proves that all finite sets of access paths do have two access per-
mission contracts subsuming all paths. The access permission contract

∑
i bi is

worthless, because it is too special. The access permission contract ∗ is worthless,
too, because it is too general.
Because the task of finding an access permission contract subsuming all access

path has these two worthless solutions, the inference algorithm has to do better.
It has to find an (valid) access permission contract, which actually helps during
software development or software testing. Therefore, our algorithm is based on a
heuristic, which tries to compute a reasonable result for a large amount of inter-
esting examples. The result should be similar to an access permission contract a
programmer would create for the software.

10.2.1 Building the Trie

For our purposes, a trie [42] is a rooted, directed graph where each node is labeled
with an integer and each edge is labeled with a property name. The trie T (Π)
represents a set of access paths Π as follows. The root node r is labeled with the
number of paths |Π|. For each property p, let p\Π = {π | p.π ∈ Π} be the set of
tails of paths that start with p. If p\Π is non-empty, then the trie for Π includes
T (p\Π), where there is an edge from r to the root node of T (p\Π).
For example, the path set Πlist = {l, h, h.d, h.n, h.n.d, h.n.n, h.n.n.d} is repre-

sented by the trie in Figure 10.3. The trie can also be considered a finite automaton
recognizing the set Π with final states indicated by the double circles in the figure.
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10 Inferring Access Permission Contracts

10.2.2 Extracting Access Permission Contracts

The goal of the extraction algorithm is to create access permission contracts of
one of the forms π or π.P ∗ .π′ where P ⊆ Prop and π′ may be empty. The initial
component π is determined by computing a set of “interesting” prefixes from a set
of paths Π, where π is a prefix of Π if there exists some π′ ∈ Π such that π is a
prefix of π′.
The question remains what is an interesting prefix. An alternative formulation

of this question is, what properties should be chosen to put into P , and what
properties should be part of π and π′. Let us call P loop properties, because the
set P contains those properties which are deferred inside of a loop or recursive
call, because only P contains properties, which may arise in an unknown number
inside a valid matching path of an access permission contract of the form π.P∗ .π′.
Putting those properties into P which are used multiple times in some path and
never in others, results in a good heuristic for identifying loop properties. The
following definition reflects this intuition.

Definition 10.2.2 (Interesting Path). A path π.p is interesting with respect to
the path set Π, if π is interesting, and if for all properties q, the set of properties
of π.q\Π does not contain q. All prefixes shorter than a given length are always
considered interesting.

The intuition behind this inductive definition is to filter all properties that occur
in a path π ∈ Π twice or more. If that is the case, the heuristic assumes the reason
for the multiple dereferencing is a loop, which may follow the property arbitrary
often. These properties should not be part of the prefix, but should be part of the
set P , if the algorithm infers an access permission contract of the form π.P ∗ .π′.
The informal definition can be formally restated as

|π| < l

π ∈ Prefixesl(Π)

π ∈ Prefixesl(Π) ∃π′ : π.q.π′ ∈ Π
∀p∃π′ : π.p.π′ ∈ Π⇒ p /∈ Prop(π.p\Π)

π.q ∈ Prefixesl(Π)

We define the shortcut Prefixes(Π) := Prefixes1(Π).
The implementation is done efficiently by a recursive function using a reformula-

tion of the predicate in the inference rule.1 Let us now consider an example to get
an intuition, what is an interesting prefix. A good access permission contract for
the set of paths Πlist is l, h.n∗ .d. Therefore, the set of interesting prefixes should

1The predicate is defined for a path and a path set

∀p : ∃π′ : π.p.π′ ∈ Π⇒ p /∈ Prop(π.p\Π)

⇔ ∀p : ∃π′ : π.p.π′ ∈ Π⇒ Prop(π\Π) ⊃ Prop(π.p\Π)

⇔ ∀p : ∃π′ : π.p.π′ ∈ Π⇒ np > llp

⇔ ∀p : ∃π′ : π.p.π′ ∈ Π⇒ ¬(np ≤ llp)

with np = |Prop(π\Π)| and llp = |Prop(π.p\Π)|.
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10.2 Algorithm

contain l and h, and no path containing a single n. The definition of interesting
prefixes yields for this example:

Prefixes(Πlist) = {ε, l, h} . (10.4)

A weakness of the definition of interesting prefixes is that the resulting set of
interesting paths contains a lot of information twice, e.g. if a path π.p is interesting,
the definition ensures, that π is also an interesting prefix. It is important to keep
both paths, if π has been added to the trie due to a write access, but it is not
important to keep it, if π was only read, because π.p will subsume this case.
Therefore, at this point, we distinguish the treatment of read paths from the
treatment of write path. As read paths are closed under taking the prefix, we may
compute the prefix reduct by removing all paths that are proper prefixes of other
paths.

Reduct(Π) = {π ∈ Π | (∀π′) |π′| > 0⇒ π.π′ /∈ Π}

For write paths, a more conservative reduction must be applied. Only those
proper prefixes can be removed that are not members of the underlying original
set. Let Π be a set of prefixes of Π0.

ReductW(Π,Π0) = Reduct(Π) ∪ (Π ∩Π0)

The reduct operation removes the empty prefix from the set of interesting
prefixes in the case of read paths, and in the case of write paths. Due to
Reduct(Prefixes(Πlist)) = {l, h}, the set of suffixes are:

l\Πlist = {ε}
h\Πlist = {ε, d, n, n.d, n.n, n.n.d}

For each of these sets, we now consider the set of interesting suffixes, where
“interesting” is defined in the same way as for prefixes. Technically, we just reverse
all path suffixes and apply the interesting-prefixes algorithm. That is,

Suffixes(Σ) =
←−−−−−−−−−
Prefixes2(

←−
Σ )

where
←−
Σ = {←−π | π ∈ Σ} and ←−π are the reverse of a path π. Please note, that

we choose l = 2 for this case, because we like to ensure, that all suffixes with a
length of 1 are added to the set of interesting suffixes. The intuition behind this
is, that an access permission contract π.P∗ is in nearly all situations too general.
It is typically better to add multiple π.P ∗ .p access permission contracts for the
properties p, for which the accesses are realized by the program.
Going back to the example, Figure 10.4 shows the trie containing the reversed

suffixes of h\Πlist . From this trie, it is easy to see that the interesting suffixes of
h\Πlist are {ε, d, n}, whereas there is only one respective suffix of l\Πlist , namely
ε.
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Figure 10.4: Reversed suffix trie

The final step of the algorithm considers for each pair of interesting prefix and
interesting suffix the remaining part in the middle. The right quotients of the suffix
language yield exactly this remaining part. The right quotient Π/π of a language
with respect to a path π is defined dually to the left quotient by

Π/π = {π′ | π′.π ∈ Π}

To abstract the resulting middle language, we restrict the algorithm to two choices.
Either ε, if the middle language is {ε}, or P∗ in all other cases.
In the example, we need to consider four cases, with the computation shown left

and the resulting access permission contracts shown in the right column:

(l\Πlist)/ε = {ε} 7→ l
(h\Πlist)/ε = h\Πlist 7→ h.{n, d}∗
(h\Πlist)/d = {ε, n, n.n} 7→ h.n ∗ .d
(h\Πlist)/n = {ε, n} 7→ h.n ∗ .n

This result is not entirely satisfactory because h.{n, d}∗ clearly subsumes h.n ∗
.d and h.n ∗ .n, but the latter two permissions are more informative and thus
preferable. Unfortunately, even together, they do not cover the access path h,
which is only covered by h.∗.
The source of the problem is that the set {ε, d, n} is suffix-closed. For prefixes we

apply the prefix reduction, because the semantics of access paths is prefix-closed.
However, we cannot just apply suffix reduction as the example shows: If the suffix
(in this case ε) is actually an element of the underlying set h\Πlist , then dropping
the suffix would be incorrect.
The solution is to treat the suffixes which would be removed by suffix reduction

but which are elements of the underlying set specially and to drop the rest. The
special treatment is simple: we just declare their middle language to be {ε}. With
this treatment (specified in function BuildPermissions in Program 10.1), the
case (h\Πlist) with suffix ε yields the access permission h. The function has to be
called for each interesting prefix with the corresponding suffix language (function
PermissionsFromPathSet).
The final result of this phase applied to the running example is the set of access

permission contracts {l, h, h.n ∗ .d, h.n ∗ .n}.
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Program 10.1 Building access permission contracts.
function BuildPermissions(π,Σ)

. π is a prefix, Σ corresponding suffix language
R← ∅ . result set of access permission contracts
Σ0 ← Suffixes(Σ) . set of interesting suffixes of Σ
for all σ ∈ Σ0 do

if σ is proper suffix of an element of Σ0 then
if σ ∈ Σ then

R = R+ π.σ

else
if Σ/σ = {ε} then . middle language is empty

R = R+ π.σ
else

R = R+ π.P ∗ .σ . P is set of properties in Σ/σ

return R

function PermissionsFromPathSet(Π0,Π)
. Π0 set of prefixes of Π, sampled set of paths

R← ∅ . result set of access permission contracts
for all π ∈ Π0 do

R = R+ BuildPermissions(π, π\Π)
return R

173



10 Inferring Access Permission Contracts

Program 10.2 Simplification.
function Simplify(R,W ) . sets of path permissions (Reading, Writing)

while (∃b, b′) b ∈ R ∧ (b′ ∈ R ∧ b 6= b′ ∨ b′ ∈W )∧ ` b ⊆ b′ do
R← R− b

return (R,W)

Program 10.3 Overall algorithm.
function Main(Πr,Πw) . Πr read paths, Πw write paths

Πr
0 ← Prefixes(Πr) . interesting prefixes of Πr

Πw
0 ← Prefixes(Πw) . interesting prefixes of Πw

R← PermissionsFromPathSet(Reduct(Πr
0),Πr)

W ← PermissionsFromPathSet(ReductW(Πw
0 ),Πw)

(R,W )←Simplify(R,W )
return R.@ +W

10.2.3 Simplifying Access Permission Contracts

The result of the previous phase is not as concise as it could be. It may still
generate redundant access permission contracts. Consider the result of the example
{l, h, h. ∗ .d, h. ∗ .n}. As this set only contains read permissions, which are closed
under prefix, it follows that permission h is subsumed by h.∗ .d and h.∗ .n, so that
the result is equivalent to (the simpler set) {l, h. ∗ .d, h. ∗ .n}.
To perform this simplification, we first define a subsumption relation ⊆ on path

permissions.

` ε ⊆ b
` b ⊆ P ′∗ .b′ P ⊆ P ′

` P.b ⊆ P ′∗ .b′
` P.b ⊆ b′

` P.b ⊆ P ′∗ .b′

` b ⊆ b′ P ⊆ P ′

` P ∗ .b ⊆ P ′∗ .b′

This relation is sound in the sense that it reflects the semantic subset relation on
sets of accepted access paths.

Lemma 10.2.3. If R(π) ≺ b and ` b ⊆ b′, then R(π) ≺ b′.

Given this relation, simplification just removes all read path permissions that are
subsumed by other (read or write) path permissions as specified in Program 10.2.
In the example, clearly ` h ⊆ h.n∗ .d, so that h can be removed from the read
path permissions.

10.2.4 Putting it Together

Program 10.3 summarizes the overall algorithm as it has been presented so far. The
parameters that determine the length and degree for the computation of interesting
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prefixes and suffixes have default values that yield good results in our experiments.
In addition, our implementation makes them accessible through the user interface
for experimentation, on a global as well as on a per-function basis.

10.3 Special Cases

There are two special cases of property accesses that lead to extremely high branch-
ing degrees.2 The first case is that an object is used as an array. The symptom
of this case is the presence of accesses to numeric properties. Our implementation
assumes that arrays contain homogeneous data and collapses all numeric property
names to a single pseudo property name ]. This collapsing already happens when
the trie is constructed from the access paths.
Similarly, an object might be used as a hash table. This use leads to the same

high branching degrees as array accesses, but cannot be reliably detected at trie
construction time. Instead, the implementation makes a pre-pass over the trie that
detects nodes with a high number of successors, merges these subtries, and relabels
the remaining edge to the merged successor trie with a wildcard pseudo property
name ?.
As the rest of the algorithm does not depend on the actual form of the property

names, the introduction of these pseudo property names is inconsequential.

10.4 Soundness

To establish the soundness of the algorithm, we need to prove that each element
of the original path set is matched by the extracted access permission contract.
The first phase, building the trie, is trivially sound. The third simplification phase
is sound by Lemma 10.2.3. It remains to consider the second phase. We only
examine the case for read paths with write paths handled similarly.
Suppose π ∈ Π, the initial set of access paths. As Π0 = Reduct(Prefixesl,d(Π)) is

prefix free, there are two possibilities. Either, there is exactly one element π0 ∈ Π0

such that π0 is a prefix of π, or there is at least one element π′ ∈ Π0 such that π
is a prefix of π′.
In the second case, π′ will be prefix of an access path π′.b with π ≺ π′.b.
In the first case, it remains to show that π0 is extended to an access path that

matches π = π0.π1. Let Σ0 be the set of interesting suffixes of Σ = π0\Π. By
construction, π1 ∈ Σ. We need to show that there is an element σ ∈ Σ0 where
either π1 = σ or π1 ≺ ∗.σ.
For a contradiction, suppose that neither is the case and let σ be the maximal

suffix of π1 in Σ0 (such σ must exist). If σ is a proper suffix of an element of Σ0 and
σ ∈ Σ, then σ = π1, a contradiction. If Σ/σ = {ε}, then σ = π1, a contradiction.
If Σ/σ 6= {ε}, then π1 ≺ ∗.σ, a contradiction.

2A branching degree is considered high, if it is larger than the configurable parameter
HIGH_DEGREE, which defaults to 20.
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Hence, all cases are matched.
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The contract compiler is implemented in roughly 15000 lines of OCaml (including
about 2000 lines devoted to parsing JavaScript). It parses the JavaScript file,
creates an abstract syntax tree of the source code, and parses the contracts from
the comments of the JavaScript code. Next, the compiler analyzes the dependencies
between the contracts to ensure that they are acyclic. Finally, it generates code for
the contracts as well as code to connect them to the test framework. Depending
on the chosen options and annotations, it additionally transforms the functions
under contract by adding monitoring assertions or rewrites the code to support
effect monitoring.
The test library consists of about 13500 lines of browser-independent JavaScript

(including a test suite with 2500 lines). The core library of JSConTest contains
about 2000 lines of code. This part contains code for contracts together with a part
that manages the test cases and assertions. Another important part is an event
handler module, which provides a user-configurable way of reacting to contract
violations, assertions and effect violations. Additionally the JavaScript library of
JSConTest provides a large number of helpful modules, for example a module that
runs the test cases on a cluster of machines, such that it is easy to run all test cases
on multiple operation systems and browsers in parallel, while collecting the results
of all these tests at one place. This module is realized by building an interface to
JSTestDriver [69], a project that supports executing JavaScript code on a cluster
of machines. Another module to mention is the Delta Debugging module, which
supports the minimization of counterexamples. The effect system is also realized in
a module (JSConTest.effects). We provide multiple versions of the effect systems,
for example a version where the reference attachment principle is replaced by a
heap location attachment principle.

11.1 Compiler

The compiler’s most important task is to transform contracts into JavaScript code
and to monitor assertions and effects.
We illustrate the transformation of contracts into JavaScript code with an ex-

ample. Program 11.2 shows the result of compiling the contract for function f
from Program 11.1. To make the code easier to read, it defines abbreviations
(line 1-14) for some functions from JSConTest with their type signatures and some
comments. As an example consider the function setVar, which stores its second
parameter in a private scope and returns it, as indicated by the id($2) contract.
The compiled code is organized as a sequential application of functions to the
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Program 11.1 JavaScript – Snippet from Program 8.2.

1 /∗c int → int ∗/
2 function f(x) {
3 return 2 ∗ x;
4 }

original function f. First the function checks its parameters against its contracts,
and then the return value against its contracts, if the contracts on the parameters
were successful. This work is done by function enableAsserts with type signature
(fun, [string], string) → fun. The first parameter is the function to wrap, the sec-
ond a list of contract identifiers (line 24), and the third is the unique function
identifier (line 25). It returns a function that may fire events on assertion fail-
ures and behaves otherwise as the wrapped function. The returned function is
then passed to overrideToStringOfFunction, which takes two objects and a boolean
value. The first parameter is the object the toString method of which is overrid-
den, the second is converted to the string returned by the method toString (of the
first object). The boolean parameter is a flag that indicates if asserts are enabled.
This makes it easier to debug the transformed source code in a browser, because
the original source code of the transformed functions is available. The next step
is to store the function together with its variable scope under its unique name for
the testing framework. To that end the function setVar is used. After that, the
following work is still left to do:

1. Create JavaScript code for contracts.

2. Store contracts under their names in the test framework.

3. Register the (function,contract) pair in the test suite, if that is not deacti-
vated by an annotation.

The JavaScript code that creates the contract (line 33-35) builds the contract
of function f from basic contracts, supported by JSConTest through the object
JSConTest.contracts, e.g. Function. The contract Function takes four parameters.
The first parameter is a list of contracts, defining what parameters the function
except, the second is the return contract of the function, the third is an object
defining what access permission contracts the function has, and the fourth param-
eter is a unique identifier of the function. This contract is stored inside the scope
of the library using setVar. Then an object with property contract and count is
created, which is used by the addContract function to store the contract together
with the function in the test suite. The function addContract takes four parame-
ters, which are the name of the contract, the function to test, a list of contracts,
that should be added to the test library, and a list of contracts that should not be
added.
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Program 11.2 JavaScript – Compiled Code for Function f - no Effect Monitoring.

1 // (string, top) → id($2)
2 var sv = JSConTest.tests.setVar;
3

4 // (fun, [string], string) → fun
5 var eA = JSConTest.tests.enableAsserts;
6

7 // {Function: js:contract, Integer: js:contract, ...}
8 var C = JSConTest.contracts;
9

10 // (obj, obj, boolean) → obj
11 var otS = JSConTest.tests.overrideToStringOfFunction;
12

13 // (top, [{contract: js:contract, count: int}]) → id($1)
14 var ac = JSConTest.tests.addContracts;
15

16

17 var f = ac(sv("f_f0",
18 // otS
19 otS(// enableAsserts, that checks if x is int
20 // and if an int is returned
21 eA(function f (x) {
22 return (2. ∗ x);
23 },
24 ["c_1"],
25 "f_f0"),
26 // original source code of f
27 function f (x) {
28 return (2. ∗ x);
29 },
30 // toString shows hint, that asserts are enabled
31 true)),
32 // contracts
33 [{contract : sv("c_1", C.Function([C.Integer],
34 C.Integer,
35 {pos : [], neg : []},
36 "f_f0"))}]
37 );
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Program 11.3 JavaScript – Compiled Code for Function f - Effect Monitoring.

20 // and if an int is returned
21 eA(JSConTest.effects.enableWrapper(function f (x) {
22 return (2. ∗ JSConTest.effects.unbox(x));
23 }),

11.1.1 Effect Monitoring

To support effect monitoring, the compiler transforms the code of the function to
monitor. Based on the formalization from Chapter 9 references have to store a
map of access path to support effect checking against access permissions. Because
the implementation lacks access to the underlining JavaScript engine, it cannot
change the representation of a reference. Hence, we introduces boxes to store the
indexed map of access path for references.
The transformation has to fulfill some properties in order to support calls be-

tween transformed code and untransformed code and vice versa. It is not an
option to forbid one of the call situations, since it is very often the case that a
function is registered as an event handler. In this case the browser directly invokes
transformed code. Similarly it is not an option to forbid transformed code calling
native browser functions (which are obviously not transformed). Because we try
to avoid adding additional properties to functions (each additional property may
be observed by untransformed code), some consequences from these requirements
are:

• Parameters are generally unboxed before calling a function.

• Transformed code needs access to the boxes of their parameters, if these
exists.

If the function from Program 8.2 is compiled with effect monitoring enabled,
the result will be similar to Program 11.2, except the function body is generated
as in Program 11.3. The function f can handle the situation that x is a wrapper
object. The second change is that the function gets an additional wrapper which
manages the box and unbox operations and that registers the corresponding access
permission contracts, when the function is called.
For the effect monitoring the transformation rewrites property reads, property

writes and function calls along with some other adjustments (see Figure 11.1).

11.1.1.1 Function calls

This section considers a code fragment with a recursive function (Program 11.4).
It demonstrates the interplay of wrapping, unwrapping, and access permission
contracts. Given a linked list, the function returns the value (v) of the last node
after recursively following the references of the next pointers (n). For expository
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11.1 Compiler

J e1[e2] K  pRead(Je1K,Je2K)
J e1[e2] = e3 K  pAssign(Je1K,Je2K ,Je3K)
J f(e1,...,en) K  fCall(f,[Je1K,...,JenK])
J o.m(e1,...,en) K  mCall(o,"m",[Je1K,..., JenK])
J new O(e1,...,en) K  cCall(O,[Je1K,..., JenK])
J for (var i in o) { e } K  for (var i in o) {

if (mCall(o,"hP",[i])) { J e K}
}

Figure 11.1: Rewrite rules for code with enabled effect monitoring. We instru-
ment the original source code from the left such that we can monitor property
reads, property writes and creation of new objects. We also rewrite function calls
to register contracts and access permission contracts.

Program 11.4 Example of a transformation with effect monitoring enabled. The
transformation algorithm ensures that the name of the contract (c_1 in the exam-
ple) is unique. The example presents only the transformation of the source code
of the function f, not the code that we generate to create the contract.

/∗c (any) → any
with [x.n./n|v/.@] ∗/

function f(x) {
if (x.n) return f(x.n);
if (x) return x.v;
return x;

};

partial
 

eA(enableWrapper(function _f(x) {
if (pRead(x, "n")) {

return fCall(f, [pRead(x, "n")]);
}
if (x) return pRead(x, "v");
return x;

},
["c_1"]), ...

purposes, the function’s implementation does not abide by its contract. Suppose
that the code under test contains the following call to f:

var x = { v: 5, n: { v: 11, n: { v: 24, n: undefined } } };
f(x);

To enable the framework to locate the permissions that need to be respected by
read and write operations in the function body, the access permission contract
for f is stored under its time stamp in a global effect store when the function is
called. At this point, the effect store contains { 0: x.n./n|v/.@ }. Then the object
wrappers for the parameters are created. For parameter x, the wrapper is given by

{ ref: { v: 5, n: { v: 11, n: { v: 24, n: undefined } } }, pmap: { 0: x } }

The pmap property stores the information that in the (outermost) function
call which is given the uid 0, the access path for the object is x. Now
the execution of the actual function body commences with the expression
pRead(x,"n"). Comparing the actual access path x.n with the permission
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x.n./n|v/.@ causes no violation, so the property access is granted, yielding a
reference to {v: 11, n: { v: 24, n: undefined } }, which is returned in a wrapper as

{ ref: {v: 11, n: { v: 24, n: undefined } }, pmap: { 0: x.n } } .

Performing the recursive call with this object as parameter creates a fresh uid 1,
and extends the wrapper for the parameter to

{ ref: {v: 11, n: { v: 24, n: undefined } }, pmap: { 0: x.n, 1: x } } .

Additionally, the global effect store is extended to { 0,1: x.n./n|v/.@ }. When read-
ing the property n again, the read access is admitted, and the wrappers are again
extended as in the previous case when calling the recursive function again. The
parameter x is now wrapped as

{ ref: {v: 24, n: undefined}, pmap: { 0: x.n.n, 1: x.n, 2: x }} .

Finally, when f tries to read n, the access to the property is not granted because the
access path for uid 0 only grants access to {x.n./n|v/.@ }, but the read operation
tries to dereference {x.n.n.n }. The result ist an access violation.

11.2 Library

11.2.1 Test Cases and Assertions

As an alternative to using the syntax introduced in Figure 8.1, the library may
also be used to construct contracts manually. For that reason (and also to simplify
compilation), the library contains many predefined contracts, for instance Top,
Null, Undefined, Boolean, True, False, String, Number, Function, Object, PObject,
AInteger. Most of them are self-explanatory, but PObject and AInteger ask for
further explanation. PObject is a contract that takes an array of property names
as an argument. It implements object contracts that rely on information generated
by the label analysis of the contract compiler. The behavior of AInteger is similar.
As a concession to the dual role of contracts, any object implementing a primitive

contract provides two methods, one to check if a value adheres to the contract and
another to randomly generate a value that is guaranteed to adhere to the contract.

11.2.2 Custom Contracts

The library contains a number of operations on contracts, for example, a union and
an intersection operation as well as operations for writing contracts from scratch.
There are many contracts for describing objects. All of them offer different ways
to specify details of object shapes by restricting the set of allowed properties, or
by restricting the corresponding values, etc. An example is an object contract
restricting the allowed property names to characters and digits (EObject). It is
also possible to specify recursive contracts for objects by using names as follows:

Let ("o", EObject[{name: "m",
contract: Function ([Name ("o")], Boolean)}])

182



11.2 Library

Let binds a contract to a name and this contract can be referred to with the
Name function. EObject constructs an object contract from an association list of
property names to contracts. The resulting contract describes an object with an
m method, which excepts an object of the same kind as its argument. Due to Let-
contracts, contracts may contain cycles. To avoid nontermination of the checking
algorithm, we assume that c.check(v) holds, if we encounter it a second time inside
the recursive call. This design choice results in an inductive interpretation of the
Let contracts.
Currently, this facility is not reflected in the surface contract language, because

it is designed with simplicity in mind.
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12 Evaluation

In this chapter, we evaluate the contract system, the access permission contract
system and the access permission contract inference algorithm of JSConTest. We
split the chapter into three sections. Section 12.1 presents case studies with the
main focus on the contract system. Section 12.2 concentrates on the evaluation
of access permission contracts. The third section evaluates how well the inference
algorithm of access permission contracts works.
All case studies in the first section work analogously. We start from JavaScript

source code and annotate the code with contracts. We validate the contract by
manual inspection and extensive testing. After establishing contracts we apply
mutation testing [5, 6] to the source code. In all case studies the mutator swaps
identifiers, boolean values and operators (e.g. ===, ==, !=, !== or +, −, ∗, \.)
The actual choice of the applied mutators depends on the source code, for example
if the source code contains float constants they are mutated, too. The result of
the mutator application is a set of mutated versions of the original program. The
mutation testing approach then results in a percentage indicating how many of the
mutated programs were rejected by JSConTest, and how many pass all contacts.
The percentage is a good measure for the effectiveness of our approach. A high
detection rate gives evidence that (guided) random testing and the monitoring
approach are capable of detecting a high percentage of programming errors. A low
detection rate lets us conclude that the dynamic approach of JSConTest is not well
suited, because it lacks the facility to detect errors reliable.
Our procedure is similar in the second section, but we provide, in addition to

contracts, access permission contracts for the programs. Hence, all case studies we
perform for the evaluation of access permission contracts also give data about the
efficiency of contracts.
In the third section our evaluation approach is different. To measure the ef-

fectiveness of access permission contract inference we cannot apply a purely au-
tomatic approach. The reason for that is already explained Chapter 10. There
is no measure for the best access permission contract and an important aspect of
the inference is, how simple and accurate the access permission contract is. The
best evaluation we can provide is to let the access inference compute the access
permission contracts for our case studies from the second section. We can then
compare the manually created access permission contract and the inferred access
permission contracts. If the inference algorithm is capable of computing the same
or similar access permission contracts then the manually created access permission
contracts, then the inference algorithm is able to save a lot of development time
and is therefore worth using.
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categories (#) (%)

accepted mutant 67 9.6
rejected mutant 628 90.4
total number of mutants 695 100.0

Table 12.1: Testing random mutations of the Huffman case study.

12.1 Contracts

In our case study to assess the efficiency contracts we do not use access permis-
sion contracts. We implement a Huffman decoder in JavaScript and specify its
interface with the contract system. Writing this decoder is not difficult, but nev-
ertheless JSConTest discovered errors during the development. Usually after just
one or two test runs the test framework found counterexamples. Each time the
counterexample simplified the debugging of the code significantly.
After some iterations of fixing small errors in the functions under test, we found

an error in the specification. The contract js:ht is a custom contract for Huffman
trees. A Huffman tree is either a node or a leaf. A node then contains two Huffman
trees as children. Leaves and nodes both contain additional information, which can
be ignored for now. The problem is that a valid Huffman tree has to have a depth
greater than zero. If the tree consists of only one leaf, no bits are consumed by
the decoder to generate an output string and the decoder enters an infinite loop.
We discovered this bug when our framework generated a Huffman tree of the form
HuffmanLeaf {s: ’’, w: ...}. This input results in a stack overflow, which is reported
by our framework as a failing test. After we fixed this specification error the system
works correctly and has correct contracts attached to each function.
The mutator swaps makeHuffmanLeaf and makeHuffmanNode, [left,right],

[true,false], [0,1], and [===,==,!=,!==], [-,+]. The mutator randomly deter-
mines the number of modifications to apply and repeatedly applies a modification
at a random place in the program.
Our test run generated 695 mutations of the original huffman.js, which were all

submitted to the contract compiler and then the resulting test runs were analyzed.
There were 67 mutants (about 10% of all mutants) for which all contracts passed

successfully. All other mutants were rejected outright by our test suite. The
average run time of each file in the browser is 5 seconds.
It is not surprising that there are modified versions for which all tests pass,

because some of the randomly chosen modifications (e.g., swapping left and right)
create mutants, in which everything is correct from a typing perspective. For
these 67 mutants, we verified manually that the modifications of these files are not
observable at the type level, for example if a contract states Top → bool and inside
the function body return true; is changed to return false;, the contract is fulfilled
by the original and the modified version. Finding such bugs is either the job of a
hand-written test suite or the task of a more detailed specification.
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Program 12.1 JavaScript – Custom contract ht — check for a Huffman tree.

1 function generate() {
2 function genRandomLeaf() {
3 return makeHuffmanLeaf(TESTS.genStringL(1), TESTS.genNInt(0,1));
4 };
5 function genRandomNode(l,r) {
6 return makeHuffmanNode([],TESTS.genNInt(0,1),l,r);
7 };
8 function cdes() { return "makeHuffmanNode"; };
9 var gN = { getcdes: cdes, arity: 2, f: genRandomNode};

10 return TESTS.genTree(isHuffmanTree,[genRandomLeaf],[gN],0.5,true);
11 };
12 var gen = TESTS.restrictTo(isHuffmanNode,generate);
13 var ht = new TESTS.newSContract(isHuffmanTree,gen,"HuffmanTree");
14

15 /∗c Top → bool ∗/
16 function isHuffmanLeaf(v) { /∗ function body here ∗/ };
17

18 /∗c Top → bool ∗/
19 function isHuffmanNode(v) { /∗ function body here ∗/ };
20

21 /∗c Top → bool | js:ht → true ~noAsserts ∗/
22 function isHuffmanTree(v) { /∗ function body here ∗/ };
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As the generated tests rejected 90% of the mutations and found 100% of the
type errors, we argue that our testing framework detects a type error with very
high probability in this case study.

12.2 Contracts and Access Permission Contracts

Our next case studies utilize contracts and access permission contracts. For each
method from the source code a person without prior knowledge created the con-
tract and access permission contract for the methods. The access contracts were
created by inspecting the source code manually to identify the set of properties
a method may access. Next, we applied mutation testing to the code to get sta-
tistical information about the effectiveness of the contracts and access permission
contracts. We derived mutants and tested each of them against the contracts. The
mutation operations were renaming of variables and properties, replacing a float
constant by another, swapping basic values and replacing a binary operator with
another. For each mutant, each method was tested with 1000 randomly generated
test cases. To assess the effectiveness of access contracts, we executed the mutants
with activated and deactivated access permission contracts.
If a mutant had violated a contract, it was categorized as rejected. If a mutant

passed all 1000 test runs for all six methods, it was sorted into the fulfilled category.
The following lines break down the mutants in six categories explaining why they
were rejected:

contract failure The mutant was rejected due to a contract failure, for example
the method returned an invalid value.

signaled error The mutant was rejected due to an error, for example because it
access a property of undefined.

browser timeout The mutant was rejected, because it did not terminate after a
timeout of 15 seconds. The average run-time for a test case was less than
10ms.

read violation If the code violated the access permission contract due to a read of
a property, the mutant was added to this category.

write violation If the code violated the access permission contract due to a write
of a property, the mutant was added to this category.

read/write violation If a mutant violated an access permission contract either by
a read or a write of a property, it was added to this category. This category
is a union of the read category and write category.

Testing a contract (and access permission contract) of a function was stopped, if
violation of either one was detected. Therefore, a method could only add a mutant
to one of the categories (except the read/write violation categorie, which is a
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union of the read and write category). But, since each mutant contained multiple
methods, a mutant could be added to multiple categories. For example if a mutant
violates its contract in one of its methods, it could violate its access permission
contract of another method due to a read access and its access permission contract
of a third method due to a write access. We count such a mutant under the
category contract failure, under the category read violation, under the category
write violation and under the contract read/write violation. Of course we never
count a mutant multiple times in a category, even if a corresponding violation
occurred in multiple methods.

12.2.1 Singly-Linked List

Our case study examines a small third-party library (200 LOC), which implements
a singly-linked list (SLL) data structure [120]. The library contains one constructor
for list nodes and six functions for lists. The functions are all stored in a prototype
object for the singly-linked lists. Therefore, the list is passed on to all of them
implicitly, and they are typically used as methods. Contracts for methods have
the structure

class.(p1, ..., pn) → pr

For the singly-linked-list implementation the class contract is the custom contract
js:ll. It performs an instance of check to decide, if a value is a singly-linked list. It
also uses a hand-written random generator for singly-linked lists (16 LOC). The
library contains six methods to operate on lists: add, item, remove, size, toArray,
toString.
Table 12.2 presents the results from the test runs. JSConTest rejects already

82% of the mutants if only the contract system is activated, while the rejection
percentage raises to 87%, when the access permission contract system is activated
additionally, which is an increase of 6%. The number for contracts without access
contracts is comparable to the 88% of rejected mutants measured in the Huffman
decoder. Therefore, we take this case study as additional evidence that it was the
right decision to use random testing to analyze contracts for JavaScript. It is also
remarkable that access contract increases the amount of rejected mutants.
The amount of mutants rejected by a contract failure is significant. Therefore, we

conclude that the specification given by our contracts is tight.Since these contracts
are the source for our random generators we also set out to investigate the behavior
of access permission contracts with less tight contracts.
To this end we created a third configuration for the singly-linked list case study.

It employed more general contracts together with the same access permission con-
tracts that had been used earlier.
Table 12.3 contains the results for this configuration. It turns out that the

detection rate is also fairly good, even if the number of mutants rejected by a

1one mutant may be counted multiple times
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only contracts and
categories contracts access permission contracts

# (%) # (%)

accepted mutants 1011 18.0 711 12.7
rejected mutants 4607 82.0 4907 87.3

total number of mutants 5618 100.0 5618 100.0

reasons to only contracts and
reject a mutant contracts access permission contracts

# (%) # (%)

contract failure 2020 43.8 1643 33.5
signaled error 2034 44.2 2136 43.5
browser timeout 553 12.0 243 5.0
read violation - 0.0 1018 20.7
write violation - 0.0 1606 32.7
read/write violation - 0.0 1842 37.5

Table 12.2: Mutation testing of the SLL case study with tight contracts. The
column “only contracts” counts mutants depending on test runs with deactivated
access permission contract system. The column “contracts and access permission
contracts” counts mutants depending on test runs with activated access permission
contract system. The second part of the table presents the reason for the rejection
of a mutant. The percentage is computed with respect to 4607 and 4907, the total
number of rejected mutants per column. The entries does not sum up to 100%,
because there might be multiple reasons for a rejection of a mutant.

contract failure drops dramatically. Access permission contracts are able to catch
many of these mutants.

Of special interest are the cases where the contract system did not detect the
mutation of the code as these cases indicate the effectiveness of the annotations. A
manual inspection of these mutants revealed that in many cases the mutated code is
semantically equivalent to the original version, for example x.p was changed to x.q,
where both properties p and q were always undefined. In other cases, the contract
was fulfilled by a mutant because the modification did not change any property
access or return value from a type perspective, for instance return true was changed
to return false. While these mutants may violate the intended semantics, we cannot
have higher expectations, because we started from a partial specification, not from
a full specification of a linked-list data structure.

We also manually inspected ten randomly selected mutants that timed out. All
of these ten mutants timed out because of an infinite loop. Hence, we have reason
to believe that our choice of timeout is sensible.
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contracts and
categories access permission contracts

# (%)

accepted mutants 1055 18.4
rejected mutants 4721 81.6

total number of mutants 5776 100.0

reasons to contracts and
reject a mutant access permission contracts

# (%)

contract failure 1096 23.2
signaled error 2243 47.5
browser timeout 369 7.8
read violation 1004 21.3
write violation 1593 33.7
read/write violation 1823 38.6

Table 12.3: Mutation testing of the SLL case study with general contracts. All
numbers are collected with activated contract system and activated access permis-
sion contract system. The first part of the table presents the number of accepted
and rejected mutants. The second part of the table presents the reason for the
rejection of a mutant. The percentage is computed with respect to 4721, the total
number of rejected mutants. The entries does sum up to more than 100%, because
there might be multiple reasons for a rejection of a mutant.

12.2.2 Google V8 - Richards and Deltablue Benchmark

Our largest case study is based on the JavaScript V8 benchmark from Google.2 The
first part is the Richards benchmark, which implements 29 functions in 650 LOC. It
simulates a task dispatcher of an operating system. The benchmark was originally
created by Martin Richards and was reimplemented by Google in JavaScript.3

A person without prior knowledge about the code developed the contracts and
access permission contracts for the functions. The main part of this work was to
write custom generators for contracts to achieve a high statement coverage. For
mutation testing we create about 2950 mutants. Each mutant executes each of
the 29 functions 50 times. Table 12.4 presents the results of the test runs. The
number of executions per function was picked small to keep the execution time low.
Introducing access permission contracts increases the detection rate from 61.1% to
69.2%, which is an improvement by 13%.
The second part of the V8 benchmark that we examined is the Deltablue con-

2http://v8.googlecode.com/svn/data/benchmarks/v6
3http://www.cl.cam.ac.uk/~mr10/Bench.html
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only contracts and
categories contracts access permission contracts

# (%) # (%)

accepted mutants 1148 38.9 911 30.8
rejected mutants 1807 61.1 2044 69.2

total number of mutants 2955 100.0 2955 100.0

reasons to only contracts and
reject a mutant contracts access permission contracts

# (%) # (%)

failed contracts 872 48.3 866 42.4
signaled error 1052 58.2 1037 50.7
browser timeout 28 1.5 30 1.5
read violation 0 0.0 202 9.9
write violation 0 0.0 149 7.4
read/write violation 0 0.0 349 17.1

Table 12.4: Testing random mutations of the Richards case study. We perform
the richards benchmark once with deactivated access contracts (column “only con-
tracts”) and once with activated access contracts (column “contracts and access
permission contracts). The second part of the table presents the reason for the
rejection of a mutant. The percentage is computed with respect to 1807 and 2044.
The entries does not sum up to 100%, because there might be multiple reasons for
a rejection of a mutant.

straint solver. The Google implementation is derived from a Smalltalk imple-
mentation by John Maloney and Mario Wolczko. It contains 59 functions and
constructors in 670 LOC. In this implementation building up the constraint model
is done by side-effects of the constructors. Therefore, the unit testing approach,
as used in the other cases studies, is not easily applicable. The work needed to set
up the environment, for example some parts of the code rely on initialized global
variables. Instead of writing additional initialization code, we saved the work by
using the main method of the benchmark itself, which sets up the necessary envi-
ronment. Therefore, only the monitoring facility of the contracts was utilized to
perform the mutation testing. The main challenge during the creation of contracts
was to figure out the object hierarchy. This work was done by a person without
prior knowledge of the benchmark. The access permission contracts were automat-
ically inferred by JSConTest, and added to the functions automatically. A manual
inspection of the inferred access permission contracts provides evidence, that the
access permission contract inference works well. Table 12.5 shows the result of
executing about 830 mutated versions of the benchmark with deactivated contract
and access permission contract monitoring. Contract monitoring was deactivated,
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access
categories only asserts permission contracts

# (%) # (%)

accepted mutants 176 21.3 102 12.8
rejected mutants 626 75.6 697 87.2

total number of mutants 802 100.0 799 100.0

access
reasons to reject a mutant only asserts permission contracts

# (%) # (%)

signaled error 505 80.7 469 67.3
browser timeout 26 4.2 29 4.2
application exception 121 19.3 73 10.5
read violation 0 0.0 135 19.4
write violation 0 0.0 20 2.9

Table 12.5: Testing random mutations of the Deltablue case study. We perform
the benchmark once without any contract checking and once with access permission
contracts activated. The second part of the table presents the reason for the
rejection of a mutant. The percentage is computed with respect to 626 and 697.
The entries does sum up to 100%, because there exists only one reason to reject a
mutant.

because the efficiency of access permission contracts should be monitored. The
benchmark contains some internal checks of invariants, which result in an applica-
tion exception. They create a reason to reject a mutant that depends not on the
contract or access permission contract system. Hence we report them in Table 12.5
in its own row. In the Deltablue benchmark adding access permissions increased
the detection rate from 75.6% to 84.2%, which is an improvement of 11.34%.

12.3 Access Permission Contract Inference

The effectiveness of access permission contract inference is another interesting thing
to investigate. JSConTest is capable of inferring access contracts of functions as
follows. To obtain a first impression what properties are accessed by the differ-
ent functions, it is sufficient to suffix an empty access permission contract to the
contract

/∗c js:ll.(top) → undefined with [] ∗/

for the add function. This augmented contract states that the function with this
contract is not allowed to read or write any property. Extending the remaining
functions’ contracts in the same way and applying the JSConTest compiler results
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in instrumented code that monitors all property accesses.
If the compiled code executes in a browser, then – besides its intended function-

ality – it collects a list with tens of thousands of property accesses which all violate
the empty effect annotations. From this raw data, our effect inference computes
concise access contracts. For example, the computed effect for add is

[this._head,this._head.∗.next,this._length]

which means that add only accesses objects via its this pointer, it reads and writes
the _head and _length properties, and it reads and writes a next property that is
reachable via _head followed by an unspecified sequence of properties as indicated
by ∗. Technically, all three path permissions are write permissions that implicitly
permit reading all prefixes of any path leading to a permitted write. Our inference
algorithm also determines that, in this case, ∗ stands for a sequence of next accesses,
but this extra information is outside the scope of the file path syntax.
The computed effect for remove is also interesting:

this._head.∗.data.@,this._head.∗.next,this._length

The function remove removes a given value from the list. To this end, it compares
this value with all data properties reachable via _head and a sequence of (all next)
properties, as indicates with the first access path. Its ending in @ indicates a read-
only path. Furthermore, remove changes next pointers and modifies the _length
property of this.
We also applied the access permission inference algorithm to various other data

structures like doubly-linked lists and binary search trees. It turns out that the
quality of the computed access permission contracts is comparable to manually
created access contract permissions.
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13.1 Testing Based on Interface Specification

The QuickCheck library [21] utilizes the type signatures that are available in the
programming language Haskell, a purely functional language, to randomly test
properties that a programmer specifies. The programmer can write Haskell func-
tions to express the properties a Haskell program should fulfill. In QuickCheck,
the programmer can also define his own generators to increase coverage. JSCon-
Test uses type contracts instead of Haskell type signatures to derive its test cases.
Type contracts are extensible. The programmer can write JavaScript functions to
specify arbitrary complex properties, as it is possible in QuickCheck. The pro-
grammer is also capable of writing his own random generators for type contracts
in JSConTest. Therefore, he is able to increase coverage similar to QuickCheck.
A feature that QuickCheck does not offer is to specify what side effects functions
are allowed to perform. JSConTest offers access permission contracts to solve this
problem, which is important in JavaScript. Both, QuickCheck and JSConTest
support test case minimization. JSConTest supports delta debugging [121, 122]
and hierarchical delta debugging [83].
DoubleCheck [31] is an adaptation of QuickCheck to the ACL2 language. It

is implemented in the Racket1 programming environment [36, 101]. If the ACL2
theorem prover cannot verify a property of a program, DoubleCheck generates
counterexamples for this property. The developer’s next step is to restate the
property and try a next verification run. Because of the counterexamples the
developer has a good information at hand why the property does not hold for the
program. PLT-Redex also comes with a random testing facility that has detected
errors in semantic specifications [72].
JCrasher [25] uses a random testing approach to find crashing program frag-

ments. It randomly creates code snippets that contain a sequence of method calls
from a set of Java classes. JCrasher ensures that a method that depends on a
parameter is called only if the parameter is created by another method call earlier
in the snippet. In JCrasher a failure is a program crash. This approach makes
JCrasher a fully automatic testing tool that does not depend in any way on con-
tracts, as JSConTest does. This benefit is also a weakness, because JCrasher
cannot test the program for user-specific contracts. Additionally, JSConTest pro-
vides a limited amount of white-box testing by collecting data to perform guided
random testing. Randoop [94] is a tool for directed random testing of Java classes.

1The Racket teaching languages also provide QuickCheck-style testing of contracts.
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It generates test cases in a similar way as JCrasher, but additionally uses the test
outcomes as feedback to avoid creating useless or outright erroneous tests. An
approach based on Randoop for JavaScript is the tool Artemis [8]. It seems easy
to combine Artemis and JSConTest, because JSConTest is based on a source-to-
source transformation and Artemis is implemented as a modification to the Rhino
JavaScript interpreter. As a benefit of the combination one gets the a high cov-
erage of an automatic test suite generated by Artemis, especially a test suite that
covers event handlers, and the expressiveness of contracts and access permission
contracts at the same time.
RUTE-J [6] is a Randomized Unit Testing Engine for Java. It helps the pro-

grammer to add some portion of randomness into his unit test suite. RUTE-J can
randomize a list of method calls as well as input data and it performs minimization
of tests and the test suite, such that the suite fulfills a coverage criteria.
The ARTOO system [19] performs adaptive random testing (ART) for Eiffel.

It is integrated into AutoTest that helps developers create, manage, and execute
software tests. It adapts previous ideas from the ART approach to an object-
oriented setting. Its underlying idea is that tests are more effective if they evenly
cover the parameter space of the method under test. Its execution requires a
distance metric on the input values. Even if a large amount of researchers propose
that ART is a technique to enhance the random testing approach, recent empirical
work [7] shows, that the amount of time used to compute the distance metric for
the input is often so expensive, that ART does not perform well. Often random
testing without any distance metric is faster and better in finding faults than ART.
JSConTest uses only simple modifications to the random testing approach that do
not increase the computation time for a new test case. The criticism against ART
does not apply to JSConTest. The Evotec system [109] is a tool for Eiffel that uses
genetic algorithms to create a good testing strategy. This approach is evaluated
with respect to the amount of time used to compute the test input and to run the
test cases. The approach is more efficient than the random+ strategy [20] and the
precondition-satisfying strategy [118], both available in AutoTest.
The DART system [44] follows an idea named concolic testing: It uses informa-

tion that it collects during a concrete and a symbolic execution of the unit under
test. Based on the collected information it generates symbolic predicates that en-
code conditions for the path taken by the unit under test in its concrete execution.
By falsifying these predicates a theorem prover systematically generates input data
to test all possible branch alternatives. In general, it is not possible to falsify the
predicates for complicated programs. But if the theorem prover is successful, the
result is a set of tests with perfect branch coverage. In contrast, JSConTest collects
its information about unit under test by a static analysis. This is possible because
the information needed by the guided random testing approach of JSConTest is
simple enough.
Based on the small scope hypothesis [63] – the set of test inputs within a some

small scope finds a high proportion of bugs – the tool Smallcheck [108] for Haskell
and the tool Korat [15] for Java systematically execute the unit under test with
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all inputs below a certain size threshold. The idea is compatible with JSConTest,
but it is not implemented in JSConTest right now.

13.2 Unit Testing Tools for JavaScript

There are many tools available to simplify the automatic execution of unit test, for
example JSUnit [74] or Jasmine [73]. JSUnit is a JavaScript port of JUnit [11] that
is not maintained anymore and replaced by Jasmine, which is a behavior-driven
tool for testing JavaScript code. JsTester [2] supports the execution of JavaScript
code inside of Java, which is useful in projects that use Java and JavaScript.
FireUnit [105] is an extension of FireBug [38], which is itself a Firefox Add-On
that facilitates debugging of JavaScript inside of Firefox. Rhinounit [115] executes
the test suite outside of a browser, which yields better performance, but often
as a downside, runs the test in another environment than the production code.
Other tools to support debugging and testing in JavaScript are JSCoverage [40]
and JSMock [28]. All these frameworks have in common that they simplify the
work of manual unit testing. In contrast, JSConTest requires interface annotations
in form of contracts. In practice, the two approaches complement one another, and
none can replace the other.

13.3 Monitoring Tools

AdJail [79] is a tool that allows to specify what part of the DOM a third party
JavaScript code fragment is allowed to read or modify. The web page developer
specifies the right a fragment gets by policy attributes in the DOM. For exam-
ple write−access: subtree specifies that third party code is allowed to modify the
subtree of the HTML element at which the attribute is set. Access permission
contracts are not applicable in this scenario in their current implementation, be-
cause they concentrate on side effects on the heap, not on the DOM. But it is
just a matter of work to support also the protection of HTML elements by access
permission contracts.
AjaxScope [71] is a tool capable of monitoring the execution of JavaScript code

remotely. It is based on a proxy server that performs on the fly parsing and
instrumentation. That makes it possible to reduce overhead because the proxy
server can be configured to just annotate specific aspects of the JavaScript code.
It is also used to spread tests among users, such that each user does not notice
the test and annotation overhead. It might be possible to combine the monitoring
facilities of AjaxScope and JSConTest for example to remotely monitor property
access or detect remotely type errors and create short summaries about these
errors.
Jim, Swamy and Hicks [67] modify the browser to register a “security hook”

function that decides whether a script is executed. They call the strategy BEEP
(Browser-Enforced Embedded Policies). Example security hooks they implement
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are a DOM sandbox and a whitelist for JavaScript source code. JSConTest can
benefit from such security hooks in order to ensure safe monitoring of code executed
by eval. It is for example possible to write a predicate that checks if javascript
source code is transformed by JSConTest. This predicate could then be installed
as a security hook similar to the whitelist.

13.4 Access Permission Contracts

13.4.1 Static Approaches

The book Principles of Program Analysis [88] states that effect systems are used
to describe how a function, beside its return value, interacts with its environment.
Gifford and Lucassen [43] invented effect systems to describe and infer side effects.
Their goal was to improve memory management and to detect code fragments that
may be executed in parallel. Typically, effect systems are integrated in static type
systems. In contrast, our system is a dynamic system, which uses monitoring to
enforce the access policy.
As an example for a static effect system we pick the work of Greenhouse and

Boyland [46]. Their system uses effect annotations to facilitate compiler optimiza-
tions. Effects are collected for regions, which are provided by the programmer by
annotations, to statically ensure that two method invocations manipulate different
parts of the heap. In contrast, our system does not target these optimizations.
Our prime goal is to detect software defects. Our approach is a dynamic approach
based on monitoring that does not provide a static guarantee about absence of side
effects. Consequentially, our system provides a more flexible and precise specifica-
tion language. Access permission contracts for example support the star operator
to describe that a method changes a property value inside of the heap following a
set of properties arbitrary often.
The static effect system of Smans and coworkers [110] relies on the Z3 SMT

solver [26] to verify that a method only accesses the part of the heap specified
by a predicate. The argument to the predicate is an access path. Therefore, the
difference to our access permission contracts – besides the fact that JSConTest
is a dynamic approach – is that an access permission contract supports the star
operator to express much more complicated access conditions than the acc predi-
cates. An interesting observation is, that the static effect system agrees with our
interpretation of the path-based semantics, and that they also use a last writer
wins principle to verify their correctness. In the static work the connection to the
Hoare Calculus [58] rule for assignment is much easier to see than in our dynamic
work.
Access permission contracts are related to work on ownership and aliasing con-

trol. Typically, an ownership system is a static analysis that imposes the ownership
structure on the object graph. In most cases, the ownership graph is a tree [1, 30,
89, 123]. Recent work [17] presents an ownership type system that give up the
constraint ownership as dominator and imposes a directed acyclic graph on the
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object graph. There also exists work on a dynamic ownership system [16]. The
main difference between ownership systems and access permission contracts is that
our system imposes path-based access restrictions.
Bierhoff and Aldrich’s work “Modular Typestate Checking of Aliased Ob-

jects” [14] presents a static system to check protocols for safe object access in
Java. They model object protocols as finite state machines. The system uses
splitting and joining rules for references based on fractions. Only if the system
ensures that a reference is unique, a type change for the underlining finite state
machine is granted.
Finifter and co-workers [37] design a JavaScript heap analysis framework to de-

tect information leaks. They state that a third of the Alexa US Top 100 web sites
are exploitable by an ADsafe-verified advertisement. To prevent exploits, third-
party code is restricted to a name space by prefixing properties with a unique
identifier. This restriction is enforced by a static verifier. Our approach based on
access permission contract supports a more flexible approach because the specifi-
cation which part of the heap is accessible is more precise than just introducing a
white list of allowed property names. It is an open question whether the flexibility
provided by JSConTest is necessary.

13.4.2 Dynamic Approaches

Run-time monitoring is a well-known approach to provide safety and security guar-
antees. Erlingsson [34] provides an overview of such applications. JSConTest does
not focus on security issues. Its goal is to increase the productivity of software
development in JavaScript. But access permission contracts, especially in their
location-based interpretation, might serve well in a security setting context. Lo-
cation based access permission contracts offer the possibility to prohibit access to
specific locations in the heap. But the current implementation of JSConTest is not
capable of establishing the guarantees a location-based access permission contract
needs due to various reasons. First, it does not observe property access done by
dynamically executed code if the code is not transformed by the off-line compiler
of JSConTest. Second, the interface to the library used to implement JSConTest
ist open, and not protected. Hence, malicious third party code just can use the
public interface of JSConTest’s effect library to modify its behavior.
Many other works follow a transformation-based approach to establish safety

and security features in scripting languages, in particular in JavaScript. The rea-
son for the approach is that with a transformation-based approach no adjustment
of the browser is necessary. That is huge benefit, because it supports the establish-
ment of the security and safety features on actual browsers. BrowserShield [104]
is a project that restricts critical operations according to a user policy by a code
transformation. The Google Caja project [45] employs an online compilation pro-
cess of JavaScript code to a safe subset named Cajita. Maffeis and co-workers [80]
combine several isolation techniques for restricting heap accesses of third-party
code. They disallow eval, Function, and constructor within untrusted code and
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also rewrite property accesses with wrappers to enable run-time checks. They also
present a set of expression templates that defines precisely by which expressions
security risks arise. For example, the expression ’’a’’ + e implicitly executes the
function toString of the object that is returned by the expression e, even if the
property name toString is not mentioned in the code. The work enumerates all
property names that may be implicitly accessed by JavaScript expressions. The
combination of the facts presented in the work and our access permission con-
tract system (in its location-bases flavor) may be used to impose security relevant
isolation properties for programs.
ConScript [81] allows fine-grained application specific security policies that are

enforced at run time by a modified JavaScript execution engine. Compared to our
approach, they have different goals and less overhead, but are tied to a particular,
obsolete browser implementation.
Program specification frameworks like Spec# [10], JML [75], or Eiffel [33] permit

the formulation of access permission contracts as FOL-formulas in Hoare-style
pre- and postconditions. Because specialized syntax is missing, the annotation
process is rather heavy-weight. Besides, these frameworks are geared towards full
specifications, whereas we are only interested in partial specifications.
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This dissertation has presented two different approaches to increasing the software
quality of JavaScript programs.
The first part of the dissertation introduced the static type system JSC. The

type system is capable of supporting strong updates for recent objects. Since its
types are defined co-inductive, it is capable of supporting cyclic object structures.
Therefore, it supports a typical initialization pattern of objects in JavaScript. The
system is formalized and proven sound. A prototype implementation is available
at http://proglang.informatik.uni-freiburg.de/JavaScript/.
The second part of the dissertation presented JSConTest, the first testing tool

for JavaScript based on type contracts and access permission contracts. JS-
ConTest validates contracts by (guided) random testing and contract monitor-
ing. Type contracts are used to generate input values for functions. JSCon-
Test uses access permission contracts to specify side effects of functions. The
second part contains a full formalization of path-based access contracts with a
soundness theorem, a completeness theorem and an error preservation theorem.
It sketches alternative designs for access permission contracts, which are useful
in other settings, for example in a security context. It also presents an infer-
ence algorithm for access permission contracts. The algorithm ensures that due
to the simplification and generalization process no access paths are missed. The
effectiveness of JSConTest has been evaluated based on case studies. An imple-
mentation of JSConTest, which also contains the cases studies, is available at
http://proglang.informatik.uni-freiburg.de/jscontest/.

14.1 Review

14.1.1 Recency Abstraction

Chapter 3 introduces the idea of recency abstraction in the context of abstract in-
terpretation. It explains that the one-to-one relation between objects and abstrac-
tions enables the type system to support strong updates for most recent objects.
Consequentially, the type system based on recency abstraction is capable of typing
typical object initialization patterns in such a way that the type system can ensure
the absence of null pointer errors during its flow-sensitive initialization phase.
Chapter 4 starts by formalizing a core calculus for JavaScript which is named
JSC. It continues by extending JSC with recency information. This extension
results in the development of JSR, a calculus that makes it simple to distinguish
between most recent objects and old objects. JSR uses a static type system to
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establish a set of invariants for programs. The most important invariant ensures
that the most recent heap always contains at most one object per abstract location.
In order to prove soundness, Chapter 4 proves some auxiliary lemmata. It finally
results in a progress theorem and a preservation theorem. Further, the decidability
of type checking for JSR is proven.
In Chapter 5 a type inference algorithm for JSR is presented. First, the de-

cidability of type inference for JSR is sketched. Second, a realistic type inference
algorithm is outlined. The realistic algorithm is implemented and it appears to
work well on examples.
Since the core calculus does not support all aspects of JavaScript to keep the for-

mal system manageable, Chapter 6 presents some extensions of JSR. It describes
how to extend JSR to support methods, functions with multiple parameters,
conditionals, loops and prototypes.
JSR is a static type system that is capable of statically ensuring the absence

of null pointer errors for JavaScript programs. Hence, the type system may be
used during software development of JavaScript programs to increase reliability
of webpages. The effort to use the type system is manageable because the type
inference reduces the annotation burden dramatically.

14.1.2 JSConTest

Chapter 8 presents a tour of JSConTest and outlines its features. JSConTest is
a dynamic system that is based on testing and monitoring. As a consequence, it
does not impose any restrictions regarding programming style on the programmer,
it provides a direct feedback loop and it is gradually applicable. The chapter
introduces type contrats, guided random testing, dependent contracts and presents
access permission contracts with examples.
Chapter 9 formalizes access permission contracts and motivates the design dis-

cussions JSConTest’s access permission contracts are based on. The most impor-
tant design decision is the path-based interpretation of access permission contracts.
A formalization of access permission contracts is developed that results in proofs
of the heap consistency theorem and the stability of violation theorem.
Because it might be tedious to write down access permission contracts manually,

an inference algorithm for access permission contracts can be helpful. Chapter 10
presents an inference algorithm, which is based on a heuristic.
Chapter 11 sketches the implementation of type contacts and access permission

contracts.
Chapter 12 evaluates the different aspects of JSConTest. The evaluation is based

on mutation testing, an approach to measuring the efficiency of test suites. It turns
out that the detection rate of type contracts, as JSConTest provides them, spots
a high number of mutants. If access permission contracts are added, the detection
rate increases again. Hence, we can conclude that the lightweight approach of
JSConTest is effective. We also evaluated the effect inference. It appears that for
all examples we examined, access permission inference creates access permission
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contracts having a quality comparable to access permission contracts created by a
human person.

14.2 Future Work

14.2.1 Recency

One possible further step is to implement the features of Chapter 6. With these
extensions in place the type system would become applicable to more real world
JavaScript programs. Thus, an evaluation of how good the type system handles
typical initialization patterns in practice could be done. For this purpose the type
system should be written in such a way that it is possible to analyze source code
statically and at the same time, it should be able to introduce runtime checks at
all places where a static type system is not capable of ensuring type correctness.
One example for such a place is a call to eval with an unknown string value. For
this purpose one can use the runtime monitoring facilities of JSConTest to observe
type contracts at runtime that correspond to the static types known to JSR.
A negative aspect of static type systems is that it can be complicated to find a

bug in a program just based on a type error. Especially in the presence of type
inference, the bug in the program does not have to be at the place at which the
type error is reported. Therefore, the programmer needs a thorough understanding
of the type checker and the type inference to correct his program based on a type
error. The situation in a recency-aware calculus is even worse because function
types depend a lot on the structure of the most recent heap. It is important to
enable the programmer to easily understand why the type inference algorithm has
come up with a particular structure of the most recent heap. One might apply
ideas from [87] to compute all possible places of a type clash. This additional
information might enable the programmer to find the source of a type error much
easier.
Another aspect of recency abstraction is that the type system is restrictive with

respect to its abstract locations. If a library is typed using an abstract location
`1 for colors, and another library uses exactly the same kind of colors, but the
typing of the latter library uses `2 to abstract over colors, the two libraries become
incompatible because of the different abstractions. In order to be able to combine
different libraries it might be helpful to define mapping from abstract locations
to other abstract locations in order to support reuse of libraries and to support
modular type inference.

14.2.2 JSConTest

There remain several opportunities to extend JSConTest. A question that comes
to mind is, whether we can use access permission contracts to enforce security
policies. The current implementation of JSConTest, which is based on a source-to-
source transformation, imposes a runtime overhead and is incapable of handling
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dynamic code loading (e.g. code loaded by eval). These restrictions have a minor
impact on the intended use of JSConTest, but in a security setting context, it is
important to address these concerns. With security in mind, a location-based in-
terpretation of access permission contracts seems more appropriate for specifying
security policies of interest. Although the dissertation proposes an implementation
strategy for location-based access permission contracts, it might also be desirable
to create a declarative specification of a location-based access permission contract
system. With such a specification at hand, a formal foundation for further investi-
gations is laid. An interesting question certainly is to prove that there is no way to
circumvent the security policies established by a location-based access permission
contract system. Based on such a specification or the proposal of the dissertation,
a browser implementation can be written. An implementation in the JavaScript
virtual machine of a browser can be much faster than the implementation that
is based on a source-to-source transformation simply because it can access data
only available to the virtual machine and it is simpler to hide meta data from the
JavaScript program. It would be interesting to compare the performance of the
path-based system and the location-based system.
The dissertation used JSConTest in many cases studies, but it might be desir-

able to collect additional data about the efficiency of the approach. It would be
interesting to investigate how much software development for larger applications
benefits from JSConTest with a case study.
Another opportunity for further development it to statically verify parts of con-

tracts and access permission contracts. With this in place, it might be possible
to reduce the runtime overhead of monitoring significantly. If it is possible to
validate many object read and write operations for code with heavy load without
the need to apply a whole program analysis, the approach will integrate well with
just-in-time compilers as employed in state of the art JavaScript engines.
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